三,滤波器设计:
1、相关原理:
设计数字滤波器的任务就是寻求一个因果稳定的线性时不变系统,并使系统函数H(z)具有指定的频率特性。
数字滤波器从实现的网络结构或者从单位冲激响应分类,可以分成无限长单位冲激响应(IIR)数字滤波器和有限长单位冲激响应(FIR)数字滤波器。
数字滤波器频率响应的三个参数:
(1)
(2)
(3)
IIR数字滤波器:
IIR数字滤波器的系统函数为 的有理分数,即
IIR数字滤波器的逼近问题就是求解滤波器的系数和,使得在规定的物理意义上逼近所要求的特性的问题。如果是在s平面上逼近,就得到模拟滤波器,如果是在z平面上逼近,则得到数字滤波器。
FIR数字滤波器:
设FIR的单位脉冲响应h(n)为实数,长度为N,则其z变换和频率响应分别为
按频域采样定理FIR数字滤波器的传输函数H(z)和单位脉冲响应h(n)可由它的N个频域采样值H(k)唯一确定。
MATLAB中提供了几个函数,分别用于实现IIR滤波器和FIR滤波器。
(1)卷积函数conv
卷积函数conv的调用格式为
该格式可以计算两向量a和b的卷积,可以直接用于对有限长信号采用FIR滤波器的滤波。
(2)函数filter
函数filter的调用格式为
该格式采用数字滤波器对数据进行滤波,既可以用于IIR滤波器,也可以用于FIR滤波器。其中向量b和a分别表示系统函数的分子、分母多项式的系数,若a=1,此时表示FIR滤波器,否则就是IIR滤波器。该函数是利用给出的向量b和a,对x中的数据进行滤波,结果放入向量y。
(3)函数fftfilt
函数fftfilt的调用格式为
该格式是利用基于FFT的重叠相加法对数据进行滤波,这种频域滤波技术只对FIR滤波器有效。该函数是通过向量b描述的滤波器对x数据进行滤波。
关于用butter函数求系统函数分子与分母系数的几种形式。
[b,a]=butter(N,wc,'high'):设计N阶高通滤波器,wc为它的3dB边缘频率,以 为单位,故 。
[b,a]=butter(N,wc):当wc为具有两个元素的矢量wc=[w1,w2]时,它设计2N阶带通滤波器,3dB通带为,w的单位为。
[b,a]=butter(N,wc,'stop'):若wc=[w1,w2],则它设计2N阶带阻滤波器,3dB通带为,w的单位为。
如果在这个函数输入变元的最后,加一个变元“s”,表示设计的是模拟滤波器。这里不作讨论。
为了设计任意的选项巴特沃斯滤波器,必须知道阶数N和3dB边缘频率矢量wc。这可以直接利用信号处理工具箱中的buttord函数来计算。如果已知滤波器指标,, 和 ,则调用格式为
[N,wc]=buttord(wp,ws,Rp,As)
对于不同类型的滤波器,参数wp和ws有一些限制:对于低通滤波器,wp<ws;对于高通滤波器,wp>ws;对于带通滤波器,wp和ws分别为具有两个元素的矢量,wp=[wp1,wp2]和ws=[ws1,ws2],并且ws1<wp1<wp2<ws2;对于带阻滤波器wp1<ws1<ws2<wp2。
2、设计内容:
(1)滤波器示例:
在这里为了说明如何用MATLAB来实现滤波,特举出一个简单的函数信号滤波实例(对信号x(n)=sin( n/4)+5cos(n/2)进行滤波,信号长度为500点),从中了解滤波的实现过程。程序如下:
Wn=0.2*pi;
N=5;
[b,a]=butter(N,Wn/pi);
n=0:499;
x=sin(pi*n/4)+5*cos(pi*n/2);
X=fft(x,4096);
subplot(221);plot(x);title('滤波前信号的波形');
subplot(222);plot(X);title('滤波前信号的频谱');
y=filter(b,a,x);
Y=fft(y,4096);
subplot(223);plot(y);title('滤波后信号的波形');
subplot(224);plot(Y);title('滤波后信号的频谱');
在这里,是采用了butter命令,设计出一个巴特沃斯低通滤波器,从频谱图中可以很明显的看出来。下面,也就是本课题的主要内容,也都是运用到了butter函数,以便容易的得到系统函数的分子与分母系数,最终以此来实现信号的滤波。
(2)N阶高通滤波器的设计(在这里,以5阶为例,其中wc为其3dB边缘频率,以 为单位),程序设计如下:
x=wavread('ding.wav');
sound(x);
N=5;wc=0.3;
[b,a]=butter(N,wc,'high');
X=fft(x);
subplot(321);plot(x);title('滤波前信号的波形');
subplot(322);plot(X);title('滤波前信号的频谱');
y=filter(b,a,x);
Y=fft(y);
subplot(323);plot(y);title('IIR滤波后信号的波形');
subplot(324);plot(Y);title('IIR滤波后信号的频谱');
z=fftfilt(b,x);
Z=fft(z);
subplot(325);plot(z);title('FIR滤波后信号的波形');
subplot(326);plot(Z);title('FIR滤波后信号的频谱');
(3)N阶低通滤波器的设计(在这里,同样以5阶为例,其中wc为其3dB边缘频率,以 为单位),程序设计如下:
x=wavread('ding.wav');
sound(x);
N=5;wc=0.3;
[b,a]=butter(N,wc);
X=fft(x);
subplot(321);plot(x);title('滤波前信号的波形');
subplot(322);plot(X);title('滤波前信号的频谱');
y=filter(b,a,x);
Y=fft(y);
subplot(323);plot(y);title('IIR滤波后信号的波形');
subplot(324);plot(Y);title('IIR滤波后信号的频谱');
z=fftfilt(b,x);
Z=fft(z);
subplot(325);plot(z);title('FIR滤波后信号的波形');
subplot(326);plot(Z);title('FIR滤波后信号的频谱');
(4)2N阶带通滤波器的设计(在这里,以10阶为例,其中wc为其3dB边缘频率,以 为单位,wc=[w1,w2],w1 wcw2),程序设计如下:
x=wavread('ding.wav');
N=5;wc=[0.3,0.6];
[b,a]=butter(N,wc);
X=fft(x);
subplot(321);plot(x);title('滤波前信号的波形');
subplot(322);plot(X);title('滤波前信号的频谱');
y=filter(b,a,x);
Y=fft(y);
subplot(323);plot(y);title('IIR滤波后信号的波形');
subplot(324);plot(Y);title('IIR滤波后信号的频谱');
z=fftfilt(b,x);
Z=fft(z);
subplot(325);plot(z);title('FIR滤波后信号的波形');
subplot(326);plot(Z);title('FIR滤波后信号的频谱');
(5)2N阶带阻滤波器的设计(在这里,以10阶为例,其中wc为其3dB边缘频率,以 为单位,wc=[w1,w2],w1 wcw2),程序设计如下:
x=wavread('ding.wav');
N=5;wc=[0.2,0.7];
[b,a]=butter(N,wc,'stop');
X=fft(x);
subplot(321);plot(x);title('滤波前信号的波形');
subplot(322);plot(X);title('滤波前信号的频谱');
y=filter(b,a,x);
Y=fft(y);
subplot(323);plot(y);title('IIR滤波后信号的波形');
subplot(324);plot(Y);title('IIR滤波后信号的频谱');
z=fftfilt(b,x);
Z=fft(z);
subplot(325);plot(z);title('FIR滤波后信号的波形');
subplot(326);plot(Z);title('FIR滤波后信号的频谱');
(6)小结:以上几种滤波,我们都可以从信号滤波前后的波形图以及频谱图上看出变化。当然,也可以用sound()函数来播放滤波后的语音,从听觉上直接感受语音信号的变化,但由于人耳听力的限制,有些情况下我们是很难听出异同的。
同样,通过函数的调用,也可以将信号的频谱进行“分离观察”,如显出信号的幅值或相位。下面,通过改变系统函数的分子与分母系数比,来观察信号滤波前后的幅值与相位。并且使结果更加明显,使人耳得以很容易的辨听。
x=wavread('ding.wav');
y=filter(b,a,x);
X=fft(x,4096);
subplot(221);plot(x);title('滤波前信号的波形');
subplot(222);plot(abs(X));title('滤波前信号的幅值');
Y=fft(y,4096);
subplot(223);plot(y);title('滤波后信号的波形');
subplot(224);plot(abs(Y));title('滤波后信号的幅值');
>> sound(y);
可以听到声音明显变得高亢了。从上面的波形与幅值(即幅频)图,也可看出,滤波后的幅值变成了滤波前的20倍。
>> figure,
subplot(211);plot(angle(X));title('滤波前信号相位');
subplot(212);plot(angle(Y));title('滤波后信号相位');
得图:
可以看到相位谱没什么变化。
(四)、界面设计:
直接用M文件编写GUI程序很繁琐,而使用GUIDE设计工具可以大大提高工作效率。GUIDE相当于一个控制面板,从中可以调用各种设计工具以辅助完成界面设计任务,例如控件的创建和布局、控件属性的编辑和菜单设计等。
使用GUIDE设计GUI程序的一般步骤如下:
1.
2.
3.
4.
5.
6.
设计过程及内容:
在MATLAB版面上,通过键入GUIDE弹出一个菜单栏进入gui制作界面(或者在File到new来进入gui),从而开始应用界面的制作。
该界面主要实现了以下几个功能:
①打开wav格式的音频文件,并将该音频信号的值读取并赋予某一向量;
②播放音频文件,可以选择性的显示该音频信号的波形、频谱、幅值以及相位;
③对音频信号进行IIR与FIR的5阶固定滤波处理,可以选择性的显示滤波前后信号的波形、频谱、幅值以及相位,以及播放滤波后的声音。
界面如图所示:
通过该界面,可以方便用户进行语音信号的处理。
界面主程序见附件。
(五)、校验:
1、本设计圆满的完成了对语音信号的读取与打开,与课题的要求十分相符;
2、本设计也较好的完成了对语音信号的频谱分析,通过fft变换,得出了语音信号的频谱图;
3、在滤波这一块,课题主要是从巴特沃斯滤波器入手来设计滤波器,也从一方面基本实现了滤波;
4、初略的完成了界面的设计,但也存在相当的不足,只是很勉强的达到了打开语音文件、显示已定滤波前后的波形等图。
四、 结论:
语音信号处理是语音学与数字信号处理技术相结合的交叉学科,课题在这里不讨论语音学,而是将语音当做一种特殊的信号,即一种“复杂向量”来看待。也就是说,课题更多的还是体现了数字信号处理技术。
从课题的中心来看,课题是希望将数字信号处理技术应用于某一实际领域,这里就是指对语音的处理。作为存储于计算机中的语音信号,其本身就是离散化了的向量,我们只需将这些离散的量提取出来,就可以对其进行处理了。