排序算法学习笔记 目录1 快速排序(分治)1.1 算法流程1.2 算法代码2 堆排序2.1 算法流程2.2 算法代码1 快速排序(分治)1.1 算法流程假设对长度为NNN的数组numsnumsnums进行升序排序。(1) 确定第iii次排序的范围[li,ri][l_i,r_i][li,ri]以及基准点nums[mi]nums[m_i]nums[mi]。其中,li≤mi≤ril_i \leq m_i \leq r_ili≤mi≤ri随机产生,0≤li,ri≤N−10 \leq l_i, r_i \leq N
利用DFT/FFT对序列位移—非整数时的陷阱 对于序列进行位移,可以通过DFT/FFT的位移性质实现。但是可以从理论上证明,当位移长度非整数时,得到的结果在绝大多数情况下是错误的。本文旨在探讨其中原因。
正交投影算法问题简述 1 理论对于无噪声模型x∈Cn×m,y∈Cn,w∈Cm,y=xw。x \in \mathbb{C}^{n \times m}, y \in \mathbb{C}^n,w \in \mathbb{C}^m,y = xw。x∈Cn×m,y∈Cn,w∈Cm,y=xw。由正交投影算法可知,w^=(xHx)−1xHy\hat{w} = (x^H x)^{-1} x^H yw^=(xHx)−1xHy此时,投影空间是mmm维的,能够正确地表征各分量的权值。然而,在实际数据处理中,mmm往往较大,上述公式难以计算,
距离-多普勒谱(RD谱)之四:多普勒积累的细节 一、前文概述在第一篇文章《距离多普勒谱(RD谱)绘制方法及理解》中,我阐述了基本的RD谱绘制方法,其中代码存在的问题,在第二篇文章《距离-多普勒谱(RD谱)之二:距离相关(匹配滤波)》中阐述并给出解决方案,在第三篇文章《距离-多普勒谱(RD谱)之三:FFT避坑指南》中,给出了MATLAB使用fft函数需要注意的细节。二、问题背景本篇考虑的不是脉冲体制雷达,而是连续波雷达!本篇考虑的不是脉冲体制雷达,而是连续波雷达!本篇考虑的不是脉冲体制雷达,而是连续波雷达!首先,我们分析第一篇文章给出的RD谱模
距离-多普勒谱(RD谱)之三:FFT避坑指南 前文距离-多普勒谱(RD谱)之二:距离相关(匹配滤波)在上篇文章中,我介绍了利用FFT替代“线性卷积”的注意事项。本文将继续对FFT操作的一些容易坑人的细节进行探讨。问题
距离-多普勒谱(RD谱)之二:距离相关(匹配滤波) 详细说明匹配滤波的概念、等效模型及实现匹配滤波的各种方法。同时,解释了conv(x,y)与ifft(fft(x) .* fft(y))结果不同的原因。
解决QT工具栏字体变大的问题 今天更新了Qt creator,结果界面变成了下面这样:这是因为Qt creator开启了高清配适,字体随系统缩放比例进行改变,关闭相应设置就能恢复原状:修改设置后,重新启动Qt creator,恢复正常:
距离多普勒谱(RD谱)绘制方法及理解 RD谱是信号处理领域常用的图形。原始信号往往是一维时域序列,如何将其二维化,并进行变换生成RD谱呢?由于刚刚接触,查阅了网络上、老师手里的资料,发现RD谱的绘制方法并不统一,有些存在一定问题。在此,将心得体会记录下来。