对数学的新思考【2】

对数学的新思考【2】转 Dahua_Lin

上面说到的实数理论,测度理论和勒贝格积分,构成了我们现在称为实分析 (Real Analysis)的数学分支,有些书也叫实变函数论。对于应用科学来说,实分析似乎没有古典微积分那么实用”——很难直接基于它得到什么算法。而且, 它要解决的某些难题”——比如处处不连续的函数,或者处处连续而处处不可微的函数——在工程师的眼中,并不现实。但是,我认为,它并不是一种纯数学概念 游戏,它的现实意义在于为许多现代的应用数学分支提供坚实的基础。下面,我仅仅列举几条它的用处:


黎曼可积的函数空间不是完备的,但是勒贝格可积的函数空间是完备的。简单的   说,一个黎曼可积的函数列收敛到的那个函数不一定是黎曼可积的,但是勒贝格可积的函数列必定收敛到一个勒贝格可积的函数。在泛函分析,还有逼近理论中,经   常需要讨论 函数的极限 ,或者 函数的级数 ,如果用黎曼积分的概念,这种讨论几乎不可想像。我们有时看一些 paper 中提到 Lp 函数空间,就是基于勒   贝格积分。  
勒贝格积分是傅立叶变换(这东西在工程中到处都是)的基础。很多关于信号处理的初等教材,可能绕过了勒贝格积分,直接讲点面对实用的东西而不谈它的数学基础,但是,对于深层次的研究问题 —— 特别是希望在理论中能做一些工作 —— 这并不是总能绕过去。  
在下面,我们还会看到,测度理论是现代概率论的基础。  
拓扑学:分析从实数轴推广到一般空间 —— 现代分析的抽象基础  
随着实数理论的建立,大家开始把极限和连续推广到更一般的地方的分析。事实   上,很多基于实数的概念和定理并不是实数特有的。很多特性可以抽象出来,推广到更一般的空间里面。对于实数轴的推广,促成了点集拓扑学 (Point- set Topology) 的建立。很多原来只存在于实数中的概念,被提取出来,进行一般性的讨论。在拓扑学里面,有 4 C 构成了它的核心:

Closed set
(闭集合)。在现代的拓扑学的公理化体系中,开集和闭集是最基本的概念。一切从此引申。这两个概念是开区间和闭区间的推广,它们的根本地位,并不是   一开始就被认识到的。经过相当长的时间,人们才认识到:开集的概念是连续性的基础,而闭集对极限运算封闭 —— 而极限正是分析的根基。  
Continuous function 
(连续函数)。连续函数在微积分里面有个用 epsilon-delta 语言给出的定义,在拓扑学中它的定义是 开集的原像是开集的函数 。第二个定义和第   一个是等价的,只是用更抽象的语言进行了改写。我个人认为,它的第三个(等价)定义才从根本上揭示连续函数的本质 ——“ 连续函数是保持极限运算的函数 ” —— 比如 y 是数列 x1, x2, x3, …  的极限,   那么如果  f  是连续函数,那么  f(y)  就是  f(x1), f(x2), f(x3), … 的极限。连续函数的重要性,可以从别的分支学科中进行类比。比如群论中,基础的运算是 乘法 ,对于群,最重要的映射叫 同态映射 ”—— 保持 乘法   映射。在分析中,基础运算是 极限 ,因此连续函数在分析中的地位,和同态映射在代数中的地位是相当的。  
Connected set 
(连通集合)。比它略为窄一点的概念叫 (Path connected) ,就是集合中任意两点都存在连续路径相连 —— 可能是一般人理解的概念。一般意义下的连通概念稍微抽象一些。在我看来,连通性有两个重   要的用场:一个是用于证明一般的中值定理 (Intermediate Value Theorem) ,还有就是代数拓扑,拓扑群论和李群论中讨论根本群 (Fundamental Group) 的阶。  
Compact set
(紧集)。 Compactness 似乎在初等微积分里面没有专门出现,不过有几条实数上的定理和它其实是有关系的。比如, 有界数列必然存在收敛子   ”—— compactness 的语言来说就是 ——“ 实数空间中有界闭集是紧的 。它在拓扑学中的一般定义是一个听上去比较抽象的东西 ——“ 紧集的任意   开覆盖存在有限子覆盖 。这个定义在讨论拓扑学的定理时很方便,它在很多时候能帮助实现从无限到有限的转换。对于分析来说,用得更多的是它的另一种形式  ——“ 紧集中的数列必存在收敛子列 ”—— 它体现了分析中最重要的 极限 Compactness 在现代分析中运用极广,无法尽述。微积分中的两个重要定   理:极值定理 (Extreme Value Theory) ,和一致收敛定理 (Uniform Convergence Theorem) 就可以借助它推广到一般的形式。  
从某种意义上说,点集拓扑学可以看成是关于 极限 的一般理论,它抽象于实数理论,它的概念成为几乎所有现代分析学科的通用语言,也是整个现代分析的根基所在。

微分几何:流形上的分析 —— 在拓扑空间上引入微分结构  
拓扑学把极限的概念推广到一般的拓扑空间,但这不是故事的结束,而仅仅是开   始。在微积分里面,极限之后我们有微分,求导,积分。这些东西也可以推广到拓扑空间,在拓扑学的基础上建立起来 —— 这就是微分几何。从教学上说,微分几何   的教材,有两种不同的类型,一种是建立在古典微机分的基础上的 古典微分几何 ,主要是关于二维和三维空间中的一些几何量的计算,比如曲率。还有一种是建   立在现代拓扑学的基础上,这里姑且称为 现代微分几何 ”—— 它的核心概念就是 流形 ”(manifold)—— 就是在拓扑空间的基础上加了一套可以进行微   分运算的结构。现代微分几何是一门非常丰富的学科。比如一般流形上的微分的定义就比传统的微分丰富,我自己就见过三种从不同角度给出的等价定义 —— 这一方   面让事情变得复杂一些,但是另外一个方面它给了同一个概念的不同理解,往往在解决问题时会引出不同的思路。除了推广微积分的概念以外,还引入了很多新概 念: tangent space, cotangent space, push forward, pull back, fibre bundle, flow, immersion, submersion  等等。

近些年,流形在 machine learning 似乎相当时髦。但是,坦率地说,要弄懂一些基本的流形算法,   甚至 创造 一些流形算法,并不需要多少微分几何的基础。对我的研究来说,微分几何最重要的应用就是建立在它之上的另外一个分支:李群和李代数 —— 这是数   学中两大家族分析和代数的一个漂亮的联姻。分析和代数的另外一处重要的结合则是泛函分析,以及在其基础上的调和分析。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值