medusa_zj
码龄5年
关注
提问 私信
  • 博客:41,712
    41,712
    总访问量
  • 39
    原创
  • 1,685,934
    排名
  • 58
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2019-10-23
博客简介:

medusa_zj的博客

查看详细资料
个人成就
  • 获得32次点赞
  • 内容获得25次评论
  • 获得283次收藏
  • 代码片获得515次分享
创作历程
  • 6篇
    2021年
  • 20篇
    2020年
  • 13篇
    2019年
成就勋章
TA的专栏
  • 深度学习
    19篇
  • python
    5篇
  • ros
    1篇
  • 安装相关
    4篇
  • TensorFlow
    8篇
兴趣领域 设置
  • 数据结构与算法
    推荐算法
  • 人工智能
    tensorflow
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

yolov5代码解读(一)

yolov5代码解读(一)common.py部分普通卷积Conv深度可分离卷积DWConv跨尺度连接1---Bottleneck跨尺度连接2---BottleneckCSP跨尺度连接3---C3空间金字塔结构---SPPFocus结构common.py部分首先插入一张YOLOV5 结构图普通卷积Conv即图中CBL部分class Conv(nn.Module): # Standard convolution def __init__(self, c1, c2, k=1, s=1
原创
发布博客 2021.11.08 ·
3720 阅读 ·
3 点赞 ·
6 评论 ·
43 收藏

python最小二乘法

python最小二乘法#文件名core.pyimport numpy as npdef leastSquare(x,y): if len(x)==2: #此时x为自然序列 sx = 0.5*(x[1]-x[0]+1)*(x[1]+x[0]) ex = sx/(x[1]-x[0]+1) sx2 = ((x[1]*(x[1]+1)*(2*x[1]+1)) -(x[0]*(x[0]-1)*(2*x[0]-1)))/6
原创
发布博客 2021.06.09 ·
216 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python画曲线图

python画曲线图一二一import numpy as npimport matplotlib.pyplot as pltimport refrom matplotlib.pyplot import MultipleLocatorinput_txt = 'r3.txt'x = []y = []f = open(input_txt)i=0for line in f: line = line.strip('
') line = line.split(' ')
原创
发布博客 2021.06.09 ·
312 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python文字转为图片

python文字转为图片一、文字横向排列二、文字纵向排列一、文字横向排列#文字横向排列import osfrom io import BytesIOfrom PIL import Image, ImageFont, ImageDrawimport pygameimport randompygame.init()font = pygame.font.Font(os.path.join("fonts", "全新硬笔楷书简.ttf"),22) # 从一个字体文件创建一个 Font 对象 同
原创
发布博客 2021.06.09 ·
1637 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

python文件重命名

python文件重命名import ospath = "C:\\Users\\Z6000\\Desktop\\文字\\psenet\\数据\\标记\\"# 获取该目录下所有文件,存入列表中f = os.listdir(path)print(len(f))print(f[0])n = 0i = 0j = 19900for i in f: # 设置旧文件名(就是路径+文件名) oldname = f[n] aaa=oldname.split("_")
原创
发布博客 2021.06.09 ·
128 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python图片处理

图片处理对图片的处理批量旋转图片图片转换为视频单张图片处理视频存为图片png变为jpg对图片的处理批量旋转图片#-*- coding: UTF-8 -*- from PIL import Imageimport os def get_filelist(path): Filelist = [] for home, dirs, files in os.walk(path): for filename in files: # 文件名列表,包含
原创
发布博客 2021.06.09 ·
238 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

kitti数据集处理

kitti数据集处理数据集处理更改类别名生成xml标签数据集处理目标识别KITTI数据集处理更改类别名import globimport string#txt_list = glob.glob('./KITTITrainLabels/label_2/*.txt') # 原始kitti labels文件夹所有txt文件路径txt_list = glob.glob('C:/Users/Z6000/Desktop/kitti/label_2/*.txt')def show_category(tx
原创
发布博客 2020.12.20 ·
928 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

注意力机制

注意力机制在CV中应用注意力机制Squeeze-and-Excitation Networks(SENet)三级目录注意力机制注意力机制源于对人类视觉的研究。视觉注意力机制是人类视觉所特有的大脑信号处理机制。在认知科学中,由于对处理信息大小的限制,人类会选择性的关注信息的一部分,而后对这些部分投入更多的注意力资源,而忽略其他可见的信息。人类视觉注意力机制极大地提高了视觉信息处理的效率和准确性。最早,注意力机制被使用在自然语言处理领域,后来在图像识别等深度学习任务中也得到广泛应用。Squeeze-an
原创
发布博客 2020.11.04 ·
1075 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

yolov3代码详解(七)

Pytorch | yolov3代码详解七test.pytest.pyfrom __future__ import divisionfrom models import *from utils.utils import *from utils.datasets import *from utils.parse_config import *import osimport sysimport timeimport datetimeimport argparseimport tqdm
原创
发布博客 2020.07.31 ·
975 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

yolov3代码详解(六)

Pytorch | yolov3代码详解六train.pytrain.pyfrom __future__ import divisionfrom models import *from utils.logger import *from utils.utils import *from utils.datasets import *from utils.parse_config import *from test import evaluatefrom terminaltables i
原创
发布博客 2020.07.31 ·
783 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

yolov3代码详解(五)

Pytorch | yolov3代码详解五detect.pydetect.pyfrom __future__ import divisionfrom models import *from utils.utils import *from utils.datasets import *import osimport sysimport timeimport datetimeimport argparsefrom PIL import Imageimport torchfro
原创
发布博客 2020.07.31 ·
614 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

yolov3代码详解(四)

Pytorch | yolov3代码详解四models.pymodels.pyfrom __future__ import divisionimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.autograd import Variableimport numpy as npfrom utils.parse_config import *from utils.utils import bu
原创
发布博客 2020.07.31 ·
666 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

yolov3代码详解(三)

Pytorch | yolov3代码详解三datasets.pydatasets.pyimport globimport randomimport osimport sysimport numpy as npfrom PIL import Imageimport torchimport torch.nn.functional as Ffrom utils.augmentations import horisontal_flipfrom torch.utils.data import
原创
发布博客 2020.07.31 ·
706 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

yolov3代码详解(二)

Pytorch | yolov3代码详解二utils.pyutils.pyfrom __future__ import divisionimport mathimport timeimport tqdmimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.autograd import Variableimport numpy as npimport matplotlib.pyplot as
原创
发布博客 2020.07.31 ·
693 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

yolov3代码详解(一)

Pytorch | yolov3代码详解一augmentations.pylogger.pyparse_config.py说明:仅供自己学习记录,有参考其他博主,侵删代码来源:eriklindernoren/PyTorch-YOLOv3参考链接参考链接augmentations.pyimport torchimport torch.nn.functional as Fimport numpy as np############################################
原创
发布博客 2020.07.31 ·
1175 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

YOLO

YOLO之前算法DPM系统R-CNNYOLOV1核心思想具体解释流程转自之前算法YOLO之前的物体检测方法(如R-CNN,Fast-R-CNN,Faster-R-CNN等):(1)通过region proposal产生大量的可能包含待检测物体的 potential bounding box(2)用分类器去判断每个 bounding box里是否包含有物体,以及物体所属类别的 probability或者 confidence。DPM系统要使用一个滑窗(sliding window)在整张图像上均
原创
发布博客 2020.07.17 ·
506 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

darknet的yolov3测试以及评价指标

评价指标评价指标Avg_loss Avg IOU一二批量测试一生成对测试集的检测结果针对测试集,批量测试图片并将测试的图片显示结果保存在自定义的文件夹下AP,mAP计算reval_voc_py.py和voc_eval_py.py评价指标cankaocankao2Avg_loss Avg IOU一训练的过程,保存训练日志的训练执行命令./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg scripts/darknet53.conv.
原创
发布博客 2020.06.08 ·
5599 阅读 ·
2 点赞 ·
9 评论 ·
50 收藏

数据格式转换

labelImg标注yolo的txt格式转换为xml格式格式介绍txt格式xml格式格式转换准备第一步第二步生成list.txt生成xml格式第一步第二步验证格式介绍txt格式xml格式格式转换准备第一步首先建立一个文件夹,如new在新建立的文件夹下建立两个文件夹:data,image。同时将labeling.exe移入,方便之后验证。建立完如下:附:注意打开labeling.exe不能有中文路径,因此,自己新建的文件夹(new)也不能有中文路径。第二步将自己的图片放入image
原创
发布博客 2020.05.21 ·
1526 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

深度学习名词解释

深度学习评价指标评价指标准确率、精确率、召回率mAP评价指标准确率、精确率、召回率True Positive(真正,TP):将正类预测为正类数True Negative(真负,TN):将负类预测为负类数False Positive(假正,FP):将负类预测为正类数误报 (Type I error)False Negative(假负,FN):将正类预测为负类数→漏报 (Type II error)精确率:是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。那么预测为正就有两
原创
发布博客 2020.05.21 ·
931 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

摄像头ros相关

摄像头摄像头协议RTSP格式海康大华摄像头协议TMP、RTSP、HTTP协议都属于互联网 TCP/IP 五层体系结构中应用层的协议。理论上这三种都可以用来做视频直播或点播。但通常来说,直播一般用 RTMP、RTSP。而点播用 HTTP。下面分别介绍下三者的特点。1,RTMP协议(1)是流媒体协议。(2)RTMP协议是 Adobe 的私有协议,未完全公开。(3)RTMP协议一般传输的是 flv,f4v 格式流。(4)RTMP一般在 TCP 1个通道上传输命令和数据。2,RTSP协议(1)是
原创
发布博客 2020.05.20 ·
575 阅读 ·
0 点赞 ·
2 评论 ·
7 收藏
加载更多