TensorFlow学习(一)
TensorFlow学习(一)
介绍
TensorFlow是一个编程系统,使用图(graphs)表示任务,使用Tensor表示数据,通过变量(variable)维护状态,使用feed和fetch为任意的操作赋值或者从其中获取数据。图中的节点称为op(operation),一个op获得0个或者多个Tensor,执行计算,产生0个或者多个Tensor,Tensor看做是一个n维的数组或者列表。图必须在会话(session)里被启动。

常量(例)
代码:实现一个常量矩阵相乘
方法一
import tensorflow as tf
#创建一个常量op
m1=tf.constant([[3,3]]) #一行两列的矩阵
#创建一个常量op
m2=tf.constant([[2],[3]]) #两行一列的矩阵
#创建一个矩阵乘法op
pr=tf.matmul(m1,m2)
#定义一个会话
sess = tf.Session()
result = sess.run(pr)
print(result)
sess.close()
结果为 [[15]]
方法二:
import tensorflow as tf
#创建一个常量op
m1=tf.constant([[3,3]]) #一行两列的矩阵
#创建一个常量op
m2=tf.constant([[2],[3]]) #两行一列的矩阵
#创建一个矩阵乘法op
pr=tf.matmul(m1,m2)
#定义一个会话
with tf.Session() as sess:
result = sess.run(pr)
print(result)
结果为 [[15]]
变量(例)
代码一:实现一个矩阵加和减
import tensorflow as tf
#定义一个变量
x = tf.Variable([1,2])
a = tf.constant([3,3])
sub = tf.subtract(x,a)
add = tf.add(x,sub)
init = tf.global_variables_initializer() #初始化变量
with tf.Session() as sess:
sess.run(init)
print(sess.run(sub))
print(sess.run(add))
结果为
[-2 -1]
[-1 1]
代码二:实现一个数自增
import tensorflow as tf
state = tf.Variable(0,name='counter')
new_value = tf.add(state,1)
update = tf.assign(state,new_value) #赋值操作
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(sess.run(state))
for i in range(5):
sess.run(update)
print(sess.run(state))
结果为
0
1
2
3
4
5
Fetch and Feed(例)
Fetch:会话中同时运行多个op
代码:
import tensorflow as tf
input1=tf.constant(3.0)
input2=tf.constant(2.0)
input3=tf.constant(5.0)
add = tf.add(input2,input3)
mu1 = tf.multiply(input1,add)
with tf.Session() as sess:
result = sess.run([mu1,add]) #### Fetch在会话中同时运行多个op
print(result)
结果为:
[21.0, 7.0]
Feed:创建占位符,在运行op的时候再传入值
代码:
import tensorflow as tf
i1 = tf.placeholder(tf.float32) #### 创建占位符
i2 = tf.placeholder(tf.float32)
output = tf.multiply(i1,i2)
####feed数据以字典的形式传入
with tf.Session() as sess:
print(sess.run(output,feed_dict={i1:7.0,i2:2.0})) ####注意是逗号不是点
print(sess.run(output,feed_dict={i1:[7.0],i2:[2.0]}))
结果为:
14.0
[14.]

被折叠的 条评论
为什么被折叠?



