TensorFlow学习(二)

TensorFlow学习(二)

线性回归(例)

利用梯度下降法来进行线性回归拟合
代码

import tensorflow as tf
import numpy as np

x_data = np.random.rand(100)   #生成100个随机点
y_data = x_data * 0.1 + 2

b = tf.Variable(0.)            #构造优化模型
k = tf.Variable(0.)
y = k * x_data + b

loss = tf.reduce_mean(tf.square(y_data-y))  #reduce_mean求平均值
optimizer = tf.train.GradientDescentOptimizer(0.2)  #定义一个梯度下降法来进行训练的优化器
train = optimizer.minimize(loss)

init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    for i in range(2000):
        sess.run(train)
    print(sess.run([k,b]))

结果为:
[0.10000114, 1.9999993]

非线性回归(例)

利用神将网络来进行非线性回归拟合
代码

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]  
noise = np.random.normal(0,0.02,x_data.shape)
y_data = np.square(x_data) + noise

x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1])

#构建神经网络,输入一层,中间10个神经元,输出一层
#中间层
weight_l1 = tf.Variable(tf.random_normal([1,10]))
biases_l1 = tf.Variable(tf.zeros([1,10]))
wx_plus_b_l1 = tf.matmul(x,weight_l1) + biases_l1
L1 = tf.nn.tanh(wx_plus_b_l1)          #双曲正切函数作为激活函数
#输出层
weight_l2 = tf.Variable(tf.random_normal([10,1]))
biases_l2 = tf.Variable(tf.zeros([1,1]))
wx_plus_b_l2 = tf.matmul(L1,weight_l2) + biases_l2
predietion = tf.nn.tanh(wx_plus_b_l2)

#定义代价函数,训练方法
loss = tf.reduce_mean(tf.square(y-predietion))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(2000):
        sess.run(train_step,feed_dict={x:x_data,y:y_data})
        
    prediction_v = sess.run(predietion,feed_dict={x:x_data})
    
    plt.figure()
    plt.scatter(x_data,y_data)
    plt.plot(x_data,prediction_v,'r',lw=5)
    plt.show()

结果为:
在这里插入图片描述

手写数字识别(例)

MNIST数据集:手写数字的数据集,一共有六万个训练样本,一万个测试样本,样本如下:
在这里插入图片描述

  • 每一张图片包含2828个像素,我们把一个数组展开成一个向量,长度为2828=784.所以在MNIST训练集数据中是一个形状为[60000,784]的张量。图片中每个像素的强度值介于0-1之间。
    在这里插入图片描述

  • MNIST数据集的标签为0-9的数字,我们把标签转化为“one-hot vectors”,一个one-hot向量除了某一位数字为1外其他维度都是0.比如标签0表示为[1 0 0 0 0 0 0 0 0 0 0 ],标签3表示为[0 0 0 1 0 0 0 0 0 0]
    所以训练集标签是一个形状为[60000,10]的张量

  • softmax函数
    softmax模型可以用来给不同对象分配概率:
    在这里插入图片描述在这里插入图片描述

    • 神经网络结构
      在这里插入图片描述

    代码如下(结果为准确率):

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
#载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)

#每个批次的大小
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size

#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])

#创建一个简单的神经网络
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b)

#二次代价函数
#loss = tf.reduce_mean(tf.square(y-prediction))
#交叉熵代价函数
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))

#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#初始化变量
init = tf.global_variables_initializer()

#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

with tf.Session() as sess:
    sess.run(init)
    for epoch in range(21):
        for batch in range(n_batch):
            batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
        
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

结果为:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值