TensorFlow学习(七)

TensorFlow学习(七)

tensorboard

可视化神经网络结构

  1. 变化的地方有两处(详情见代码,代码仍然用之前识别手写数字的代码):
    (1)定义一个命名空间:tf.name_scope()
    (2)将生成的图,存储:
    writer = tf.summary.FileWriter('logs/',sess.graph)

其中’logs/'为当前文件夹下,创建一个名为logs的文件夹,图存放在其中。

  1. 打开cmd,进入图存放的盘中
    本例图存放地址为:E:\anaconda\test1\logs
    所以命令为:
C:\Users\Z6000>e:
 然后输入命令:
E:\>tensorboard --logdir=E:\anaconda\test1\logs
 得到网址,例如:

在这里插入图片描述
然后在网页(建议用谷歌浏览器)中输入网址,就可以看到可视化结果。
如果输入上述命令,出现如下错误:

TensorBoard 1.14.0 at http://LAPTOP-K843PQKN:6006/ (Press CTRL+C to quit)

则需要指定路径:

E:\>tensorboard --logdir=E:\anaconda\test1\logs --host=127.0.0.1

得到的可视化结果如下:
在这里插入图片描述
鼠标左键可以移动图片,滚轮可以放大缩小图片。
3. 具体代码如下:

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data#载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
batch_size = 100
n_batch = mnist.train.num_examples // batch_size

#命名空间
with tf.name_scope('input'):
    #定义两个placeholder
    x = tf.placeholder(tf.float32,[None,784],name='x_input')
    y = tf.placeholder(tf.float32,[None,10],name='y_input')

#创建一个简单的神经网络
W1 = tf.Variable(tf.random_normal([784,500]))
b1 = tf.Variable(tf.random_normal([1,500]))
L1 = tf.matmul(x,W1)+b1
LL1 = tf.nn.tanh(L1)
#LL1 = tf.nn.sigmoid(L1)

W2 = tf.Variable(tf.zeros([500,10]))
b2 = tf.Variable(tf.zeros([10]))
L2 = tf.matmul(LL1,W2)+b2
prediction = tf.nn.softmax(L2)

loss = tf.reduce_mean(tf.square(y-prediction))
train_step = tf.train.GradientDescentOptimizer(0.3).minimize(loss)

#初始化变量
init = tf.global_variables_initializer()

#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

with tf.Session() as sess:
    sess.run(init)
    writer = tf.summary.FileWriter('logs/',sess.graph)
    for epoch in range(2):
        for batch in range(n_batch):
            batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
        
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

查看网络运行的数据

  1. 在上述代码中添加:
# 参数概要
def variable_summaries(var):
    with tf.name_scope('summaries'):
        mean = tf.reduce_mean(var)
        tf.summary.scalar('mean',mean) # 平均值
        with tf.name_scope('stddev'):
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
        tf.summary.scalar('stddev',stddev) # 标准差
        tf.summary.scalar('max', tf.reduce_max(var)) # 最大值
        tf.summary.scalar('min', tf.reduce_min(var)) # 最小值
        tf.summary.histogram('histogram',var) # 直方图

之后再添加要查看的值:

variable_summaries(W2)

然后合并所有的summary

merged = tf.summary.merge_all()

最后更改:

with tf.Session() as sess:
    sess.run(init)
    writer = tf.summary.FileWriter('logs/',sess.graph)
    for epoch in range(10):
        for batch in range(n_batch):
            batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
            summary,_=sess.run([merged,train_step],feed_dict={x:batch_xs,y:batch_ys})
            
            
        writer.add_summary(summary,epoch)
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

运行后得到结果再网页中查看:

在这里插入图片描述

  1. 完整代码如下:
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data#载入数据集```
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
batch_size = 100
n_batch = mnist.train.num_examples // batch_size

def variable_summaries(var):
    with tf.name_scope('summaries'):
        mean = tf.reduce_mean(var)
        tf.summary.scalar('mean',mean) # 平均值
        with tf.name_scope('stddev'):
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
        tf.summary.scalar('stddev',stddev) # 标准差
        tf.summary.scalar('max', tf.reduce_max(var)) # 最大值
        tf.summary.scalar('min', tf.reduce_min(var)) # 最小值
        tf.summary.histogram('histogram',var) # 直方图

#命名空间
with tf.name_scope('input'):
    #定义两个placeholder
    x = tf.placeholder(tf.float32,[None,784],name='x_input')
    y = tf.placeholder(tf.float32,[None,10],name='y_input')

with tf.name_scope('layer'):
    #创建一个简单的神经网络
    with tf.name_scope('W1'):
        W1 = tf.Variable(tf.random_normal([784,500]),name='W1')
        variable_summaries(W1)
    with tf.name_scope('b1'):
        b1 = tf.Variable(tf.random_normal([1,500]),name='b1')
        variable_summaries(b1)
    with tf.name_scope('wx_plus_b1'):
        L1 = tf.matmul(x,W1)+b1
        LL1 = tf.nn.tanh(L1)
        #LL1 = tf.nn.sigmoid(L1)
    
    with tf.name_scope('W2'):
        W2 = tf.Variable(tf.zeros([500,10]),name='W2')
        variable_summaries(W2)
    with tf.name_scope('b2'):
        b2 = tf.Variable(tf.zeros([10]),name='b2')
        variable_summaries(b2)
    with tf.name_scope('wx_plus_b2'):
        L2 = tf.matmul(LL1,W2)+b2
        prediction = tf.nn.softmax(L2)
        
with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.square(y-prediction))
    tf.summary.scalar('loss',loss)
with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(0.3).minimize(loss)

#初始化变量
init = tf.global_variables_initializer()

with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
        #结果存放在一个布尔型列表中
        correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
    with tf.name_scope('accuracy'):
        #求准确率
        accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
        tf.summary.scalar('accuracy',accuracy)

#合并所有的summary        
merged = tf.summary.merge_all()

with tf.Session() as sess:
    sess.run(init)
    writer = tf.summary.FileWriter('logs/',sess.graph)
    for epoch in range(10):
        for batch in range(n_batch):
            batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
            summary,_=sess.run([merged,train_step],feed_dict={x:batch_xs,y:batch_ys})
            
            
        writer.add_summary(summary,epoch)
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值