TensorFlow学习(七)
TensorFlow学习(七)
tensorboard
可视化神经网络结构
- 变化的地方有两处(详情见代码,代码仍然用之前识别手写数字的代码):
(1)定义一个命名空间:tf.name_scope()
(2)将生成的图,存储:
writer = tf.summary.FileWriter('logs/',sess.graph)
其中’logs/'为当前文件夹下,创建一个名为logs的文件夹,图存放在其中。
- 打开cmd,进入图存放的盘中
本例图存放地址为:E:\anaconda\test1\logs
所以命令为:
C:\Users\Z6000>e:
然后输入命令:
E:\>tensorboard --logdir=E:\anaconda\test1\logs
得到网址,例如:

然后在网页(建议用谷歌浏览器)中输入网址,就可以看到可视化结果。
如果输入上述命令,出现如下错误:
TensorBoard 1.14.0 at http://LAPTOP-K843PQKN:6006/ (Press CTRL+C to quit)
则需要指定路径:
E:\>tensorboard --logdir=E:\anaconda\test1\logs --host=127.0.0.1
得到的可视化结果如下:

鼠标左键可以移动图片,滚轮可以放大缩小图片。
3. 具体代码如下:
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data#载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
batch_size = 100
n_batch = mnist.train.num_examples // batch_size
#命名空间
with tf.name_scope('input'):
#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784],name='x_input')
y = tf.placeholder(tf.float32,[None,10],name='y_input')
#创建一个简单的神经网络
W1 = tf.Variable(tf.random_normal([784,500]))
b1 = tf.Variable(tf.random_normal([1,500]))
L1 = tf.matmul(x,W1)+b1
LL1 = tf.nn.tanh(L1)
#LL1 = tf.nn.sigmoid(L1)
W2 = tf.Variable(tf.zeros([500,10]))
b2 = tf.Variable(tf.zeros([10]))
L2 = tf.matmul(LL1,W2)+b2
prediction = tf.nn.softmax(L2)
loss = tf.reduce_mean(tf.square(y-prediction))
train_step = tf.train.GradientDescentOptimizer(0.3).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(init)
writer = tf.summary.FileWriter('logs/',sess.graph)
for epoch in range(2):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
查看网络运行的数据
- 在上述代码中添加:
# 参数概要
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean',mean) # 平均值
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev',stddev) # 标准差
tf.summary.scalar('max', tf.reduce_max(var)) # 最大值
tf.summary.scalar('min', tf.reduce_min(var)) # 最小值
tf.summary.histogram('histogram',var) # 直方图
之后再添加要查看的值:
variable_summaries(W2)
然后合并所有的summary
merged = tf.summary.merge_all()
最后更改:
with tf.Session() as sess:
sess.run(init)
writer = tf.summary.FileWriter('logs/',sess.graph)
for epoch in range(10):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
summary,_=sess.run([merged,train_step],feed_dict={x:batch_xs,y:batch_ys})
writer.add_summary(summary,epoch)
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
运行后得到结果再网页中查看:

- 完整代码如下:
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data#载入数据集```
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
batch_size = 100
n_batch = mnist.train.num_examples // batch_size
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean',mean) # 平均值
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev',stddev) # 标准差
tf.summary.scalar('max', tf.reduce_max(var)) # 最大值
tf.summary.scalar('min', tf.reduce_min(var)) # 最小值
tf.summary.histogram('histogram',var) # 直方图
#命名空间
with tf.name_scope('input'):
#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784],name='x_input')
y = tf.placeholder(tf.float32,[None,10],name='y_input')
with tf.name_scope('layer'):
#创建一个简单的神经网络
with tf.name_scope('W1'):
W1 = tf.Variable(tf.random_normal([784,500]),name='W1')
variable_summaries(W1)
with tf.name_scope('b1'):
b1 = tf.Variable(tf.random_normal([1,500]),name='b1')
variable_summaries(b1)
with tf.name_scope('wx_plus_b1'):
L1 = tf.matmul(x,W1)+b1
LL1 = tf.nn.tanh(L1)
#LL1 = tf.nn.sigmoid(L1)
with tf.name_scope('W2'):
W2 = tf.Variable(tf.zeros([500,10]),name='W2')
variable_summaries(W2)
with tf.name_scope('b2'):
b2 = tf.Variable(tf.zeros([10]),name='b2')
variable_summaries(b2)
with tf.name_scope('wx_plus_b2'):
L2 = tf.matmul(LL1,W2)+b2
prediction = tf.nn.softmax(L2)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.square(y-prediction))
tf.summary.scalar('loss',loss)
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.3).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
with tf.name_scope('accuracy'):
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
tf.summary.scalar('accuracy',accuracy)
#合并所有的summary
merged = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(init)
writer = tf.summary.FileWriter('logs/',sess.graph)
for epoch in range(10):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
summary,_=sess.run([merged,train_step],feed_dict={x:batch_xs,y:batch_ys})
writer.add_summary(summary,epoch)
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
505

被折叠的 条评论
为什么被折叠?



