FLUX.1+ComfyUI 部署与使用:完整指南

📑前言

随着生成式人工智能技术的不断发展,图像生成模型成为了各行业创新应用的重要工具。FLUX.1 作为由黑森林实验室(Black Forest Labs)开发的一款高性能图像生成模型,其功能和表现已经超越了市场上多个流行模型如 Midjourney v6.0、DALL·E 3 (HD) 和 SD3-Ultra 等。本文将为您详细介绍 FLUX.1 各个版本的性能特点,以及如何通过丹摩平台部署 FLUX.1,并结合 ComfyUI 使用该模型进行图像生成。

一、FLUX.1 简介

FLUX.1 模型共有三个版本,分别适用于不同的用户需求和使用场景:

  1. FLUX.1-pro:闭源版本,提供最高级的图像生成性能和提示词识别能力,适合企业定制和高级用户。此版本支持通过官方 API 访问,并提供定制化服务。
  2. FLUX.1-dev:开源但不可商用的版本,继承了 FLUX.1-pro 的核心功能,图像生成效果接近专业版,且更高效。适合开发者研究和测试。
  3. FLUX.1-schnell:开源且可商用,专为本地开发和个人使用优化,注重生成速度和内存占用的平衡。此版本在 Apache 2.0 许可下发布。

FLUX.1 的模型参数多达 120 亿,是市面上一些同类模型(如 SD3 Medium 的 20 亿参数)的多倍。这使得 FLUX.1 在图像质量、提示词准确性、图像尺寸适应性和多样性等方面表现卓越,确立了图像合成技术的新高度。

在这里插入图片描述

二、FLUX.1 部署流程

2.1 创建 GPU 云实例

首先,我们需要在丹摩平台上创建一个 GPU 实例。以下是具体步骤:

  • 进入控制台,选择“GPU 云实例”,点击“创建实例”。
  • 在实例配置页面,选择按量付费或包月套餐。GPU 数量建议选择 1,首次创建实例推荐使用 NVIDIA-GeForce-RTX-4090(24GB 显存,60GB 内存),以满足 FLUX.1 的推理需求。
  • 设置硬盘大小,建议将默认的 50GB 数据硬盘扩容至 150GB,以便存储 FLUX.1 模型和其他必要资源。
  • 选择 PyTorch 2.4.0 的镜像,并创建 SSH 密钥对,确保登录安全。

成功创建实例后,您可以通过 SSH 或 JupyterLab 连接到服务器,并开始模型部署。

2.2 部署 ComfyUI

ComfyUI 是一个用户友好的界面工具,能够帮助用户轻松操作 FLUX.1 模型。以下是部署 ComfyUI 的步骤:

  • 启动 JupyterLab,创建一个终端,并在终端中执行以下命令克隆 ComfyUI 的代码库:
git clone https://github.com/comfyanonymous/ComfyUI.git

若您遇到下载速度缓慢的问题,也可以使用 gitCode 镜像加速:

git clone https://gitcode.com/gh_mirrors/co/ComfyUI.git
  • 进入 ComfyUI 目录并安装所需依赖:
cd ComfyUI/
pip install -r requirements.txt --ignore-installed
  • 安装完成后,启动 ComfyUI:
python main.py --listen

如果您在安装依赖时遇到冲突报错(如 psutil 版本冲突),可以通过以下命令解决:

pip uninstall psutil
pip install -r requirements.txt --ignore-installed

成功启动 ComfyUI 后,您可以通过 0.0.0.0:8188 访问该工具的 GUI。

2.3 部署 FLUX.1

接下来,我们将 FLUX.1 模型部署至 ComfyUI。丹摩平台已为您预置了 FLUX.1 的相关资源,可以通过内网高速下载。以下是以 FLUX.1-dev 版本为例的部署流程:

  • 下载 FLUX.1-dev 模型文件:
wget http://file.s3/damodel-openfile/FLUX.1/FLUX.1-dev.tar
  • 解压模型文件:
tar -xf FLUX.1-dev.tar

解压后,进入模型文件夹并将模型文件移动至 ComfyUI 对应的文件夹中:

cd /root/workspace/FLUX.1-dev
mv flux1-dev.safetensors /root/workspace/ComfyUI/models/unet/
mv ae.safetensors /root/workspace/ComfyUI/models/vae/
  • 接着,下载并解压 Clip 模型:
wget http://file.s3/damodel-openfile/FLUX.1/flux_text_encoders.tar
tar -xf flux_text_encoders.tar

将 Clip 模型文件移动至 ComfyUI 的 Clip 文件夹:

cd /root/workspace/flux_text_encoders
mv clip_l.safetensors /root/workspace/ComfyUI/models/clip/
mv t5xxl_fp16.safetensors /root/workspace/ComfyUI/models/clip/

至此,FLUX.1-dev 模型已经部署完毕,您可以通过 ComfyUI 进行模型的推理操作。

三、使用 FLUX.1 生成图像

3.1 运行 FLUX.1

部署完毕后,您可以通过以下命令启动 ComfyUI:

cd /root/workspace/ComfyUI
python main.py --listen

服务成功启动后,您可以通过 0.0.0.0:8188 访问 ComfyUI 的图形界面。

若您使用的是丹摩平台的 GPU 实例,可以通过端口映射功能,将内网端口映射至公网,方便外部访问。进入实例页面,点击“操作-更多-访问控制”,添加8188端口映射即可。

3.2 导入工作流

FLUX.1 提供了多种预设的工作流,您可以直接加载或拖动这些工作流以生成图像。以下是几个 FLUX.1-dev 和 FLUX.1-schnell 不同精度下的展示效果:

  • FLUX.1-dev-FP16
  • FLUX.1-schnell-FP16
  • FLUX.1-dev-FP8
  • FLUX.1-schnell-FP8

您可以选择合适的工作流进行实验,根据提示词输入生成不同风格和质量的图像。

四、总结

通过本篇教程,您已经了解了 FLUX.1 模型的不同版本及其性能特点,并掌握了在丹摩平台上部署 FLUX.1 和 ComfyUI 的完整流程。FLUX.1 提供了卓越的图像生成能力,无论是高效的生成速度,还是对提示词的准确理解,均达到了业界领先水平。

未来,随着 FLUX.1 模型的不断优化和升级,它将在图像生成领域继续引领潮流。如果您是开发者或企业用户,FLUX.1-pro 版本提供了更高效的服务;而对于个人爱好者或小型项目,FLUX.1-schnell 和 FLUX.1-dev 版本则是理想的选择。

欢迎大家下载和使用 FLUX.1,探索无限可能的图像创作世界!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值