tensorRT的使用包括两个阶段, build and runtime (deployment):
build:Import and optimize trained models to generate inference engines

build阶段主要完成模型转换(从caffe或TensorFlow到TensorRT),在模型转换时会完成前述优化过程中的层间融合,精度校准。这一步的输出是一个针对特定GPU平台和网络模型的优化过的TensorRT模型,这个TensorRT模型可以序列化存储到磁盘或内存中。存储到磁盘中的文件称之为 plan file。
build阶段依次实例化以下对象
- ILogger
- IBuilder
- INetworkDefiniton
- IParser
- ICudaEngine
- serialize成IHostMemory
build示例代码
//brief: Builds an engine from a network definition.
//创建一个IBuilder对象
IBuilder *builder = createInferBuilder(gLogger);
//brief: A network definition for input to the builder.
// 创建一个network对象
INetworkDefinition *network = builder->createNetwork();
//brief: Class used for parsing Caffe models. Allows users to export models trained using Caffe to TRT.
//创建一个ICaffeParser对象,继承自IParser类,用于解析caffe模型
ICaffeParser *parser = createCaffeParser();
//brief: Set the IPluginFactory used to cr

最低0.47元/天 解锁文章

1454

被折叠的 条评论
为什么被折叠?



