TensorRT使用基本流程

tensorRT的使用包括两个阶段, build and runtime (deployment):

build:Import and optimize trained models to generate inference engines

在这里插入图片描述

build阶段主要完成模型转换(从caffe或TensorFlow到TensorRT),在模型转换时会完成前述优化过程中的层间融合,精度校准。这一步的输出是一个针对特定GPU平台和网络模型的优化过的TensorRT模型,这个TensorRT模型可以序列化存储到磁盘或内存中。存储到磁盘中的文件称之为 plan file。

build阶段依次实例化以下对象

  • ILogger
  • IBuilder
  • INetworkDefiniton
  • IParser
  • ICudaEngine
  • serialize成IHostMemory

build示例代码

    //brief: Builds an engine from a network definition.
    //创建一个IBuilder对象
    IBuilder *builder = createInferBuilder(gLogger);
    //brief: A network definition for input to the builder.
    // 创建一个network对象
    INetworkDefinition *network = builder->createNetwork();
    //brief: Class used for parsing Caffe models. Allows users to export models trained using Caffe to TRT.
    //创建一个ICaffeParser对象,继承自IParser类,用于解析caffe模型
    ICaffeParser *parser = createCaffeParser();
    //brief: Set the IPluginFactory used to cr
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值