机器学习笔记1


机器学习模型是特征空间到输出空间的映射,一般有假设函数和参数w组成。一个模型的假设空间(hypothesis space)是指给定所有的可能的参数w对应的输出空间的集合。(参考链接:http://tech.meituan.com/mt-mlinaction-how-to-ml.html

模型训练就是基于训练数据,获得一组参数w是得特定目标最优,即获得了特征空间到输出空间的最优映射。

评价分类模型模型好坏可以采用Area Under Curve(AUC)  和 Mean Absolute Error (参考链接http://www.cnblogs.com/lixiaolun/p/4053499.html


完成数据的筛选和清洗之后,就完成了输入空间特征空间的转换,线性模型和非线性模型的需要进行不同特征的抽取,线性模型特征抽取要求高,非线性模型要求比较低。特征分为high level 和 low level (参考链接http://blog.csdn.net/chloezhao/article/details/53444856)

阅读更多
上一篇排序算法之插入排序
下一篇机器学习笔记2
想对作者说点什么? 我来说一句

机器学习笔记整理

2018年04月18日 652KB 下载

机器学习笔记

2016年06月08日 7.93MB 下载

李弘毅机器学习笔记

2018年06月29日 57.97MB 下载

机器学习笔记完整版v4.21

2018年04月28日 15.07MB 下载

没有更多推荐了,返回首页

关闭
关闭