强子的博客

天地有情尽白发,人间无意了沧桑!

剑指Offer | 矩形覆盖

做了个剑指Offer的题目目录,链接如下:
https://blog.csdn.net/mengmengdastyle/article/details/80317246

一、题目

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

二、思路

依旧是斐波那契数列。
用归纳法归纳如下,
(1)当 n < 1时,显然不需要用2*1块覆盖,按照题目提示应该返回 0。
(2)当 n = 1时,只存在一种情况。
这里写图片描述
(3)当 n = 2时,存在两种情况。
这里写图片描述
(4)当 n = 3时,明显感觉到如果没有章法,思维难度比之前提升挺多的。
这里写图片描述
… 尝试归纳,本质上 n 覆盖方法种类都是对 n - 1 时的扩展。
可以明确,n 时必定有 n-1时原来方式与2*1的方块结合。也就是说, f(n) = f(n-1) + ?(暂时无法判断)。
(4)如果我们现在归纳 n = 4,应该是什么形式?
4.1)保持原来n = 3时内容,并扩展一个 2*1 方块,形式分别为 “| | | |”、“= | |”、“| = |”
4.2)新增加的2*1 方块与临近的2*1方块组成 2*2结构,然后可以变形成 “=”。于是 n = 4在原来n = 3基础上增加了”| | =”、“= =”。
再自己看看这多出来的两种形式,是不是只比n = 2多了“=”。其实这就是关键点所在…因为,只要2*1或1*2有相同的两个时,就会组成2*2形式,于是就又可以变形了。
所以,自然而然可以得出规律: f(n) = f(n-1) + f(n-2), (n > 2)。

三、代码

public class Solution {
    public int RectCover(int target) {
        if (target < 1) {
            return 0;
        } else if (target == 1 || target == 2) {
            return target;
        } else {
            return RectCover(target-1) + RectCover(target-2);
        }
    }
}
阅读更多
文章标签: java 算法
个人分类: java 算法
上一篇剑指Offer | 目录
下一篇微服务Spring Cloud | 目录汇总
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭