参考
重要考点
- kafka 为什么那么快
-
Cache Filesystem Cache PageCache缓存
-
顺序写 由于现代的操作系统提供了预读和写技术,磁盘的顺序写大多数情况下比随机写内存还要快。
-
Zero-copy 零拷技术减少拷贝次数
-
传统传输文件流程
1. 硬盘—>内核buf—>用户buf—>socket相关缓冲区—>协议引擎
零拷贝
1. sendfile系统调用,文件数据被copy至内核缓冲区
2. 再从内核缓冲区copy至内核中socket相关的缓冲区
3. 最后再socket相关的缓冲区copy到协议引擎
总结
相较传统read/write方式,2.1版本内核引进的sendfile已经减少了内核缓冲区到user缓冲区,再由user缓冲区到socket相关缓冲区的文件copy,而在内核版本2.4之后,文件描述符结果被改变,sendfile实现了更简单的方式,再次减少了一次copy操作
* Batching of Messages 批量量处理。合并小的请求,然后以流的方式进行交互,直顶网络上限。
* Pull 拉模式 使用拉模式进行消息的获取消费,与消费端处理能力相符。
-
消息堆积
- 消费端宕机
增加自动拉起脚本 告警 - 消费能力弱
增强消费能力 异常处理 - 调节消费参数
- max.poll.interval.ms 每次poll消息处理时间调大
- max.poll.records 每次拉取消息条数减小
- 分片少
- 分片不均匀:producer生产时设置key hash到分区均匀
- 消费端宕机
-
rebalance
原因:- 消费者组消费者数量发生变化
- 主题(Topic)的分区数量发生变化
方案:
- 启用Kafka的自动提交偏移量,防止消息丢失
合理设置消费者参数
- 未能及时发送心跳而Rebalance
- session.timeout.ms 一次session的连接超时时间
- heartbeat.interval.ms 心跳时间,一般为超时时间的1/3,Consumer在被判定为死亡之前,能够发送至少 3 轮的心跳请求
- Consumer消费超时而Rebalance
- max.poll.interval.ms 每隔多长时间去拉取消息。合理设置预期值,尽量但间隔时间消费者处理完业务逻辑,否则就会被coordinator判定为死亡,踢出Consumer Group,进行Rebalance
- max.poll.records 一次从拉取出来的数据条数。根据消费业务处理耗费时长合理设置,如果每次max.poll.interval.ms 设置的时间较短,可以max.poll.records设置小点儿,少拉取些,这样不会超时。
总之,尽可能在max.poll.interval.ms时间间隔内处理完max.poll.records条消息,让Coordinator认为消费Consumer还活着

9806

被折叠的 条评论
为什么被折叠?



