CF 798C

题目:

给定序列,问将其gcd变成非1需要执行最少几次操作。

题目给的操作:将相邻的a,b 变成 a-b, a+b 。

题解:

动脑子会发现俩奇数操作之后必然会获得因子2 。

一奇数一偶数两次操作之后必然会得到因子2 。

俩偶数不需要操作就可以得到因子2 。

如果题目序列gcd不为1必然操作数就是0 。

于是必定有解,只需要足够多的操作次数,就可以将所有的奇数变成偶数。

这里有一个问题,为什么一定是将奇数变成偶数?

因为俩偶数加减必然还是偶数,偶数之间gcd不可能产生奇数因子。

所以在没救的情况下只能让奇数挂掉。

#include<iostream>
using namespace std;

int gcd(int a,int b){
    if(b==0) return a;
    return gcd(b,a%b);
}

int arr[101000];

int main(){
    int cnt=0;
    int n;
    cin>>n;
    int GCD=0;
    for(int i=0;i<n;i++){
        cin>>arr[i];
        GCD=gcd(GCD,arr[i]);
    }
    if(GCD>1){
        cout<<"YES"<<endl;
        cout<<0<<endl;
        return 0;
    }
    for(int i=0;i<n-1;i++){
        if(arr[i]%2==1&&arr[i+1]%2==1){
            int a=max(arr[i],arr[i+1]);
            int b=min(arr[i],arr[i+1]);
            arr[i]=a+b;
            arr[i+1]=a-b;
            cnt++;
        }
    }
    for(int i=0;i<n-1;i++){
        if(arr[i]%2==0&&arr[i+1]%2==1){
            int a=max(arr[i],arr[i+1]);
            int b=min(arr[i],arr[i+1]);
            arr[i]=a+b;
            arr[i+1]=a-b;
            int aa=max(arr[i],arr[i+1]);
            int bb=min(arr[i],arr[i+1]);
            arr[i]=aa+bb;
            arr[i+1]=aa-bb;
            cnt+=2;
        }
        else if(arr[i]%2==1&&arr[i+1]%2==0){
            int a=max(arr[i],arr[i+1]);
            int b=min(arr[i],arr[i+1]);
            arr[i]=a+b;
            arr[i+1]=a-b;
            int aa=max(arr[i],arr[i+1]);
            int bb=min(arr[i],arr[i+1]);
            arr[i]=aa+bb;
            arr[i+1]=aa-bb;
            cnt+=2;
        }
    }
    cout<<"YES"<<endl;
    cout<<cnt<<endl;
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页