Hdu 6017 Girls Love 233【Dp+思维】好题~

Girls Love 233

 
 Accepts: 30
 
 Submissions: 218
 Time Limit: 2000/1000 MS (Java/Others)
 
 Memory Limit: 65536/65536 K (Java/Others)
问题描述
除了翘课以外,结识新的妹子也是呃喵重要的日程安排之一。
这不,呃喵又混进了一个叫做ACgirls的女生群里,来达成自己不可描述的目的。
然而,呃喵只会喵了个咪地说话,于是很容易引起注意。为了掩饰自己的真实身份,呃喵每次说话都小心翼翼。
她知道,很多女生都喜欢说"233",然而呃喵想说的话一开始就确定好了,所以她要对这句话做修改。
这句话的长度为n,语句里的字符不是'2'就是'3'。
呃喵的智力非常有限,只有m点。她每次操作可以交换两个相邻的字符,然而代价是智力-2。
现在问你,在使得自己智力不降为负数的条件下,呃喵最多能使这个字符串中有多少个子串"233"呢?
如"2333"中有一个"233","232323"中没有"233"
输入描述
第一行为一个整数T,代表数据组数。
接下来,对于每组数据——
第一行两个整数n和m,分别表示呃喵说的字符串长度 以及呃喵的智力
第二行一个字符串s,代表呃喵具体所说的话。

数据保证——
1 <= T <= 1000
对于99%的数据,1 <= n <= 10, 0 <= m <= 20
对于100%的数据,1 <= n <= 100, 0 <= m <= 100
输出描述
对于每组数据,输出一行。
该行有1个整数,表示最多可使得该字符串中有多少个"233"
输入样例
3
6 2
233323
6 1
233323
7 4
2223333
输出样例
2
1
2

思路(脑洞蛮大的一个题):


1、设定dp【i】【j】【k】表示还有i个2没有处理,最后一个2现在处于位子j,并且组成了k个233的最小智力花费。

那么此时我们可以有:

dp【i-1】【t】【k+(位子t和位子j相差距离是否比2大)】=min(【i-1】【t】【k+(位子t和位子j相差距离是否比2大)】,dp【i】【j】【k】+abs(pos【i-1第i-1个2的位子】-t));

那么过程维护,我们枚举dp【i】【j】【k】<=m的进行状态转移即可。

问题难点在于设定维度上边,如果dp数组设定出来了,状态转移不是很难转移。


2、注意这里T很大,并且小数据很多,所以我们不能直接memset.


Ac代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int dp[150][150][150];
int pos[150];
char a[1000];
int n,m;
void init()
{
    for(int i=0;i<=5+n;i++)
    {
        for(int j=0;j<=5+n;j++)
        {
            for(int k=0;k<=5+n;k++)
            {
                dp[i][j][k]=0x3f3f3f3f;
            }
        }
    }
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        init();
        m/=2;
        scanf("%s",a+1);
        int cnt=0;
        for(int i=1;i<=n;i++)
        {
            if(a[i]=='2')pos[++cnt]=i;
        }

        pos[++cnt]=n+1;
        dp[cnt][n+1][0]=0;
        for(int i=cnt;i>=1;i--)
        {
            for(int j=0;j<=n+1;j++)
            {
                for(int k=0;k<=n/3+2;k++)
                {
                    if(dp[i][j][k]<=m)
                    {
                        for(int t=j-1;t>=1;t--)
                        dp[i-1][t][k+(t+2<j)]=min(dp[i-1][t][k+(t+2<j)],dp[i][j][k]+abs(pos[i-1]-t));
                    }
                }
            }
        }
        int ans=0;
        for(int j=0;j<=n+1;j++)
        {
            for(int k=0;k<=n/3+2;k++)
            {
                if(dp[1][j][k]<=m)
                ans=max(k,ans);
            }
        }
        printf("%d\n",ans);
    }
}

















  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的量都是一样的,求最小的割枝次。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值