一、介绍
音乐推荐与管理系统。本系统采用Python作为主要开发语言,前端使用HTML、CSS、BootStrap等技术搭建界面平台,后端使用Django框架处理请求,并基于Ajax等技术实现前端与后端的数据通信。在音乐个性推荐功能模块中采用通过Python编写协同过滤推荐算法模块,实现对当前登录用户的个性化推荐。
主要功能有:
- 系统分为普通用户和管理员两个角色
- 普通用户可以登录、注册、查看音乐列表、查看音乐详情、播放音乐、收藏、发布评论、查看编辑个人信息、查看浏览量排行、查看编辑个人收集信息、音乐推荐等
- 管理员在后台管理系统中可以管理音乐和用户等所有信息
二、系统效果图片展示




三、演示视频 and 完整代码 and 远程安装
获取地址:https://www.yuque.com/ziwu/yygu3z/noq0cs1vn3dhbykv
四、协同过滤算法介绍
协同过滤推荐算法是一种通过用户行为或物品之间的相似性来进行推荐的算法,广泛应用于电商、流媒体等场景。其核心思想是利用“用户-物品”交互矩阵,通过发现相似用户或相似物品进行推荐。
- 基于用户的协同过滤:通过计算用户之间的相似度,推荐与当前用户兴趣相似的用户喜欢的物品。假设用户 A 和用户 B 对某些物品的评分很相似,那么 A 未评分的、B 喜欢的物品可以推荐给 A。
- 基于物品的协同过滤:通过计算物品之间的相似度,推荐与用户喜欢的物品相似的其他物品。例如,如果用户喜欢某部电影 A,且电影 B 与 A 有相似的用户评分模式,那么可以推荐电影 B。
协同过滤的一个重要步骤是相似度计算,常见的方法包括余弦相似度和皮尔逊相关系数。
示例代码(基于用户的协同过滤,使用矩阵分解):
import numpy as np
from numpy.linalg import norm
# 用户对物品的评分矩阵
ratings = np.array([
[5, 3, 0, 1],
[4, 0, 0, 1],
[1, 1, 0, 5],
[0, 0, 5, 4],
[0, 3, 4, 5]
])
# 计算用户之间的余弦相似度
def cosine_similarity(ratings):
norm_ratings = norm(ratings, axis=1)
return np.dot(ratings, ratings.T) / (norm_ratings[:, None] * norm_ratings[None, :])
user_similarity = cosine_similarity(ratings)
# 为目标用户(如第一个用户)推荐物品
def recommend(user_index, ratings, user_similarity, top_n=2):
similar_users = user_similarity[user_index]
weighted_ratings = np.dot(similar_users, ratings)
# 排除目标用户已评分的物品
recommendations = np.where(ratings[user_index] == 0, weighted_ratings, 0)
recommended_items = np.argsort(recommendations)[::-1][:top_n]
return recommended_items
recommended_items = recommend(0, ratings, user_similarity)
print("为目标用户推荐的物品索引:", recommended_items)
这个版本的代码实现了基于用户的协同过滤,使用了余弦相似度计算用户相似度矩阵,并推荐相似用户喜欢的物品。
280

被折叠的 条评论
为什么被折叠?



