一、介绍
商品识别系统,本系统使用Python作为主要开发语言,通过收集了7种常见的商品图像数据集(‘杯子’, ‘椅子’, ‘汽车’, ‘电脑’, ‘电视机’, ‘衣服’, ‘鞋子’),然后基于TensorFlow搭建卷积神经网络算法模型,然后进行多轮迭代训练,最后得到一个识别精度较高的模型文件,再使用Django开发了一个Web操作的网页平台,实现用户上传一张商品图片识别其名称。
二、系统效果图片展示



三、演示视频 and 完整代码 and 远程安装
获取地址:https://www.yuque.com/ziwu/yygu3z/lrgel1shcg8uf25h
四、TensorFlow介绍
TensorFlow 是一个开源的机器学习框架,广泛应用于图像识别领域。它提供了丰富的工具和库,使得开发者可以轻松构建和训练神经网络模型。图像识别主要依赖于卷积神经网络(CNN),这种网络能够自动提取图像的特征,例如边缘、纹理、形状等,逐步构建出对整个图像的理解。
在图像识别任务中,TensorFlow 提供了多种预训练模型(如 ResNet、Inception、MobileNet),这些模型已经在大规模数据集上训练,用户可以通过迁移学习将它们应用于自己的任务,从而大幅减少训练时间。例如,用户只需要针对特定任务的数据集(如动物、花朵、交通标志等)进行微调,而不必从头开始训练模型。
通过 TensorFlow,用户可以将图片数据集导入系统,利用卷积层进行特征提取,利用全连接层进行分类,并对图像类别进行预测。TensorFlow 的自动微分功能可以高效地计算损失函数和梯度,优化模型参数,最终提高模型的识别准确率。
1357

被折叠的 条评论
为什么被折叠?



