day27 第七章 回溯算法part03● 39. 组合总和● 40.组合总和II● 131.分割回文串

39. 组合总和

力扣题目链接(opens new window)

给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的数字可以无限制重复被选取。

说明:

  • 所有数字(包括 target)都是正整数。
  • 解集不能包含重复的组合。

示例 1:

  • 输入:candidates = [2,3,6,7], target = 7,
  • 所求解集为: [ [7], [2,2,3] ]

示例 2:

  • 输入:candidates = [2,3,5], target = 8,
  • 所求解集为: [ [2,2,2,2], [2,3,3], [3,5] ]

#算法公开课

《代码随想录》算法视频公开课 (opens new window)Leetcode:39. 组合总和讲解 (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解

#思路

题目中的无限制重复被选取,吓得我赶紧想想 出现0 可咋办,然后看到下面提示:1 <= candidates[i] <= 200,我就放心了。

本题和77.组合 (opens new window)216.组合总和III (opens new window)的区别是:本题没有数量要求,可以无限重复,但是有总和的限制,所以间接的也是有个数的限制。

本题搜索的过程抽象成树形结构如下:

39.组合总和

 注意图中叶子节点的返回条件,因为本题没有组合数量要求,仅仅是总和的限制,所以递归没有层数的限制,只要选取的元素总和超过target,就返回!

而在77.组合 (opens new window)216.组合总和III (opens new window)中都可以知道要递归K层,因为要取k个元素的组合。

#回溯三部曲

  • 递归函数参数

这里依然是定义两个全局变量,二维数组result存放结果集,数组path存放符合条件的结果。(这两个变量可以作为函数参数传入)

首先是题目中给出的参数,集合candidates, 和目标值target。

此外我还定义了int型的sum变量来统计单一结果path里的总和,其实这个sum也可以不用,用target做相应的减法就可以了,最后如何target==0就说明找到符合的结果了,但为了代码逻辑清晰,我依然用了sum。

本题还需要startIndex来控制for循环的起始位置,对于组合问题,什么时候需要startIndex呢?

我举过例子,如果是一个集合来求组合的话,就需要startIndex,例如:77.组合 (opens new window)216.组合总和III (opens new window)

如果是多个集合取组合,各个集合之间相互不影响,那么就不用startIndex,例如:17.电话号码的字母组合(opens new window)

注意以上我只是说求组合的情况,如果是排列问题,又是另一套分析的套路,后面我在讲解排列的时候会重点介绍

代码如下:

vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex)

  • 递归终止条件

在如下树形结构中:

39.组合总和

从叶子节点可以清晰看到,终止只有两种情况,sum大于target和sum等于target。

sum等于target的时候,需要收集结果,代码如下:

if (sum > target) {
    return;
}
if (sum == target) {
    result.push_back(path);
    return;
}
  • 单层搜索的逻辑

单层for循环依然是从startIndex开始,搜索candidates集合。

注意本题和77.组合 (opens new window)216.组合总和III (opens new window)的一个区别是:本题元素为可重复选取的

class Solution {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        callTraverse(candidates,target,0,0);
        return result;
    }
    private void callTraverse(int[] candidates, int target , int sum, int index){
        if(sum > target) return;
        if(sum == target){
            result.add(new ArrayList(path));
            return;
        }
        for(int i = index; i < candidates.length; i++){
            sum += candidates[i];
            path.add(candidates[i]);
            callTraverse(candidates,target,sum,i);
            sum -= candidates[i];
            path.removeLast();
        }
    }
}

40.组合总和II

力扣题目链接(opens new window)

给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用一次。

说明: 所有数字(包括目标数)都是正整数。解集不能包含重复的组合。

  • 示例 1:
  • 输入: candidates = [10,1,2,7,6,1,5], target = 8,
  • 所求解集为:
[
  [1, 7],
  [1, 2, 5],
  [2, 6],
  [1, 1, 6]
]
  • 示例 2:
  • 输入: candidates = [2,5,2,1,2], target = 5,
  • 所求解集为:
[
  [1,2,2],
  [5]
]

#算法公开课

《代码随想录》算法视频公开课 (opens new window)回溯算法中的去重,树层去重树枝去重,你弄清楚了没?| LeetCode:40.组合总和II (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解

#思路

这道题目和39.组合总和 (opens new window)如下区别:

  1. 本题candidates 中的每个数字在每个组合中只能使用一次。
  2. 本题数组candidates的元素是有重复的,而39.组合总和 (opens new window)是无重复元素的数组candidates

最后本题和39.组合总和 (opens new window)要求一样,解集不能包含重复的组合。

本题的难点在于区别2中:集合(数组candidates)有重复元素,但还不能有重复的组合

一些同学可能想了:我把所有组合求出来,再用set或者map去重,这么做很容易超时!

所以要在搜索的过程中就去掉重复组合。

很多同学在去重的问题上想不明白,其实很多题解也没有讲清楚,反正代码是能过的,感觉是那么回事,稀里糊涂的先把题目过了。

这个去重为什么很难理解呢,所谓去重,其实就是使用过的元素不能重复选取。 这么一说好像很简单!

都知道组合问题可以抽象为树形结构,那么“使用过”在这个树形结构上是有两个维度的,一个维度是同一树枝上使用过,一个维度是同一树层上使用过。没有理解这两个层面上的“使用过” 是造成大家没有彻底理解去重的根本原因。

那么问题来了,我们是要同一树层上使用过,还是同一树枝上使用过呢?

回看一下题目,元素在同一个组合内是可以重复的,怎么重复都没事,但两个组合不能相同。

所以我们要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重

为了理解去重我们来举一个例子,candidates = [1, 1, 2], target = 3,(方便起见candidates已经排序了)

强调一下,树层去重的话,需要对数组排序!

选择过程树形结构如图所示:

40.组合总和II

可以看到图中,每个节点相对于 39.组合总和 (opens new window)我多加了used数组,这个used数组下面会重点介绍。

#回溯三部曲

  • 递归函数参数

39.组合总和 (opens new window)套路相同,此题还需要加一个bool型数组used,用来记录同一树枝上的元素是否使用过。

这个集合去重的重任就是used来完成的。

代码如下:

vector<vector<int>> result; // 存放组合集合
vector<int> path;           // 符合条件的组合
void backtracking(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& used) {

  • 递归终止条件

39.组合总和 (opens new window)相同,终止条件为 sum > target 和 sum == target

代码如下:

if (sum > target) { // 这个条件其实可以省略
    return;
}
if (sum == target) {
    result.push_back(path);
    return;
}

sum > target 这个条件其实可以省略,因为在递归单层遍历的时候,会有剪枝的操作,下面会介绍到。

  • 单层搜索的逻辑

这里与39.组合总和 (opens new window)最大的不同就是要去重了。

前面我们提到:要去重的是“同一树层上的使用过”,如何判断同一树层上元素(相同的元素)是否使用过了呢。

如果candidates[i] == candidates[i - 1] 并且 used[i - 1] == false,就说明:前一个树枝,使用了candidates[i - 1],也就是说同一树层使用过candidates[i - 1]

此时for循环里就应该做continue的操作。

这块比较抽象,如图:

40.组合总和II1

我在图中将used的变化用橘黄色标注上,可以看出在candidates[i] == candidates[i - 1]相同的情况下:

  • used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
  • used[i - 1] == false,说明同一树层candidates[i - 1]使用过

可能有的录友想,为什么 used[i - 1] == false 就是同一树层呢,因为同一树层,used[i - 1] == false 才能表示,当前取的 candidates[i] 是从 candidates[i - 1] 回溯而来的。

而 used[i - 1] == true,说明是进入下一层递归,去下一个数,所以是树枝上,如图所示:

这块去重的逻辑很抽象,网上搜的题解基本没有能讲清楚的,如果大家之前思考过这个问题或者刷过这道题目,看到这里一定会感觉通透了很多!

题解: 这个题有点复杂,又要做到可以选取重复数组内的重复元素,又不能让结果重复。所以我们在递归树枝上可以选取重复的数, 但是在树层上,遇到过的数就不能再选取了。所以used数组是为了告诉统一树层上的数不能选取重复数,所以要对原数组进行排序。但是为了让树枝上顺利取数,还是要used数组设置为true来顺利取数。这样同一层看到的重复数字就是false,同一列看到的重复就是true。

class Solution {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();
    boolean[] used;
    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        used = new boolean[candidates.length];
        Arrays.sort(candidates);
        Arrays.fill(used,false);
        callTraverse(candidates,target,0,0);
        return result;
    }
    private void callTraverse(int[] candidates, int target , int sum, int index){
        if(sum > target) return;
        if(sum == target){
            result.add(new ArrayList(path));
            return;
        }
        for(int i = index; i < candidates.length && sum + candidates[i] <= target; i++){
            if(i>0 && candidates[i] == candidates[i-1] && used[i-1] == false){
                continue;
            }
            sum += candidates[i];
            path.add(candidates[i]);
            used[i] = true;
            callTraverse(candidates,target,sum,i+1);
            sum -= candidates[i];
            path.removeLast();
            used[i] = false;
        }
    }
}

131.分割回文串

力扣题目链接(opens new window)

给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。

返回 s 所有可能的分割方案。

示例: 输入: "aab" 输出: [ ["aa","b"], ["a","a","b"] ]

#算法公开课

《代码随想录》算法视频公开课 (opens new window)131.分割回文串 (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解

#思路

本题这涉及到两个关键问题:

  1. 切割问题,有不同的切割方式
  2. 判断回文

相信这里不同的切割方式可以搞懵很多同学了。

这种题目,想用for循环暴力解法,可能都不那么容易写出来,所以要换一种暴力的方式,就是回溯。

一些同学可能想不清楚 回溯究竟是如何切割字符串呢?

我们来分析一下切割,其实切割问题类似组合问题

例如对于字符串abcdef:

  • 组合问题:选取一个a之后,在bcdef中再去选取第二个,选取b之后在cdef中再选取第三个.....。
  • 切割问题:切割一个a之后,在bcdef中再去切割第二段,切割b之后在cdef中再切割第三段.....。

感受出来了不?

所以切割问题,也可以抽象为一棵树形结构,如图:

131.分割回文串

递归用来纵向遍历,for循环用来横向遍历,切割线(就是图中的红线)切割到字符串的结尾位置,说明找到了一个切割方法。

此时可以发现,切割问题的回溯搜索的过程和组合问题的回溯搜索的过程是差不多的。

#回溯三部曲

  • 递归函数参数

全局变量数组path存放切割后回文的子串,二维数组result存放结果集。 (这两个参数可以放到函数参数里)

本题递归函数参数还需要startIndex,因为切割过的地方,不能重复切割,和组合问题也是保持一致的。

回溯算法:求组合总和(二) (opens new window)中我们深入探讨了组合问题什么时候需要startIndex,什么时候不需要startIndex。

代码如下:

vector<vector<string>> result;
vector<string> path; // 放已经回文的子串
void backtracking (const string& s, int startIndex) {
  • 递归函数终止条件

131.分割回文串

从树形结构的图中可以看出:切割线切到了字符串最后面,说明找到了一种切割方法,此时就是本层递归的终止条件。

那么在代码里什么是切割线呢?

在处理组合问题的时候,递归参数需要传入startIndex,表示下一轮递归遍历的起始位置,这个startIndex就是切割线。

所以终止条件代码如下:

void backtracking (const string& s, int startIndex) {
    // 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
    if (startIndex >= s.size()) {
        result.push_back(path);
        return;
    }
}

  • 单层搜索的逻辑

来看看在递归循环中如何截取子串呢?

for (int i = startIndex; i < s.size(); i++)循环中,我们 定义了起始位置startIndex,那么 [startIndex, i] 就是要截取的子串。

首先判断这个子串是不是回文,如果是回文,就加入在vector<string> path中,path用来记录切割过的回文子串。

代码如下:

for (int i = startIndex; i < s.size(); i++) {
    if (isPalindrome(s, startIndex, i)) { // 是回文子串
        // 获取[startIndex,i]在s中的子串
        string str = s.substr(startIndex, i - startIndex + 1);
        path.push_back(str);
    } else {                // 如果不是则直接跳过
        continue;
    }
    backtracking(s, i + 1); // 寻找i+1为起始位置的子串
    path.pop_back();        // 回溯过程,弹出本次已经添加的子串
}

注意切割过的位置,不能重复切割,所以,backtracking(s, i + 1); 传入下一层的起始位置为i + 1

#判断回文子串

最后我们看一下回文子串要如何判断了,判断一个字符串是否是回文。

可以使用双指针法,一个指针从前向后,一个指针从后向前,如果前后指针所指向的元素是相等的,就是回文字符串了。

那么判断回文的C++代码如下:

 bool isPalindrome(const string& s, int start, int end) {
     for (int i = start, j = end; i < j; i++, j--) {
         if (s[i] != s[j]) {
             return false;
         }
     }
     return true;
 }

如果大家对双指针法有生疏了,传送门:双指针法:总结篇!(opens new window)

此时关键代码已经讲解完毕,整体代码如下(详细注释了)

根据Carl给出的回溯算法模板:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

不难写出如下代码:

class Solution {
private:
    vector<vector<string>> result;
    vector<string> path; // 放已经回文的子串
    void backtracking (const string& s, int startIndex) {
        // 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
        if (startIndex >= s.size()) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i < s.size(); i++) {
            if (isPalindrome(s, startIndex, i)) {   // 是回文子串
                // 获取[startIndex,i]在s中的子串
                string str = s.substr(startIndex, i - startIndex + 1);
                path.push_back(str);
            } else {                                // 不是回文,跳过
                continue;
            }
            backtracking(s, i + 1); // 寻找i+1为起始位置的子串
            path.pop_back(); // 回溯过程,弹出本次已经添加的子串
        }
    }
    bool isPalindrome(const string& s, int start, int end) {
        for (int i = start, j = end; i < j; i++, j--) {
            if (s[i] != s[j]) {
                return false;
            }
        }
        return true;
    }
public:
    vector<vector<string>> partition(string s) {
        result.clear();
        path.clear();
        backtracking(s, 0);
        return result;
    }
};
  • 时间复杂度: O(n * 2^n)
  • 空间复杂度: O(n^2)

题解: 这个题难得自己写出来而且和答案几乎一模一样,要注意的点还是一样,每一个树枝是每一次切割的第一个开始点,而横行则是判断一次切多少。注意String的substring是小些,左闭右开。终止条件就是判断切割的开头是不是到末尾了就行。

class Solution {
    List<List<String>> result = new ArrayList<>();
    LinkedList<String> path = new LinkedList<>();
    public List<List<String>> partition(String s) {
        callTraverse(s,s.length(),0);
        return result;
    }

    private void callTraverse(String s, int size, int startindex){
        if(startindex == size){
            result.add(new ArrayList(path));
            return;
        }
        for(int i = startindex; i < size; i++){
             String s1 = s.substring(startindex,i+1);
             if(isTrue(s1)){
                 path.add(s1);
                 callTraverse(s,size,i+1);
                 path.removeLast();
             }
             else{
                 continue;
             }

        }
    }
    private boolean isTrue(String s){
        char[] chars = s.toCharArray();
        int j = chars.length-1;
        for(int i = 0; i <= j; i++,j--){
            if(chars[i] != chars[j]){
                return false;
            }
        }
        return true;
    }
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值