UVa 10663 Non-Powerful Subsets

题目描述

我们定义一个自然数子集为“非幂集”,如果该子集中不存在任何子集(可以是它本身)使得其元素之和等于某个幂数。这里的幂数定义为:对于所有 N N N M ≥ 2 M \geq 2 M2 ,形如 N M N^M NM 的数。注意, 1 1 1 不被视为幂数。

给定整数 a a a b b b ,我们的目标是找出区间 [ a , b ] [a, b] [a,b] 中满足上述性质的第一个最大子集。子集 X X X 排在 Y Y Y 前面,如果 X X X 中至少存在一个元素小于或等于 Y Y Y 中的每个元素。如果第一个值相同,则输出第二个值更小的解,依此类推。一个子集被称为“最大的”,如果不能再向其中添加任何元素而不破坏性质。

输入格式

输入文件包含多个测试用例,每行一个。每个测试用例包含两个整数 a a a b b b ,满足 1 ≤ a ≤ b ≤ 1000 1 \leq a \leq b \leq 1000 1ab1000 。输入以 EOF \texttt{EOF} EOF 结束。

输出格式

对于每个输入,输出一行,包含属于该子集的数字,按升序排列并用空格分隔。子集至少包含一个元素。

样例输入

2 3
3 20
4 28

样例输出

2 3
3 7 10 11
5 6 7 17 28

题目分析与解题思路

问题理解

我们需要在区间 [ a , b ] [a, b] [a,b] 中找到一个满足以下条件的子集:

  1. 非幂性:子集的任何子集(包括自身)的元素之和不能是幂数。
  2. 最大性:不能再向该子集中添加任何 [ a , b ] [a, b] [a,b] 中的元素而不破坏非幂性。
  3. 字典序最小:在所有最大子集中,选择“第一个”最大的子集,即按题目定义的偏序关系最小的子集。

题目中的偏序定义可以理解为:比较两个子集排序后的元素序列,按字典序比较,选择较小的那个。

关键观察

  1. 幂数定义:幂数是形如 N M N^M NM 的数,其中 N ≥ 2 N \geq 2 N2 M ≥ 2 M \geq 2 M2 ,且 1 1 1 不是幂数。在区间 [ 1 , 1000 ] [1, 1000] [1,1000] 中,幂数包括 4 , 8 , 9 , 16 , 25 , 27 , 32 , 36 , 49 , 64 , 81 , 100 , … 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, \ldots 4,8,9,16,25,27,32,36,49,64,81,100, 等。

  2. 单个元素的限制:如果某个数本身就是幂数,那么它绝对不能出现在子集中,因为单个元素就构成了一个子集,其和就是该幂数。

  3. 组合限制:对于子集中的任意多个元素,它们的和不能是幂数。这意味着我们需要避免某些数字组合。

解题策略

由于题目要求的是字典序最小的极大子集,我们可以采用贪心策略:

  1. 按升序处理数字:从 a a a b b b 依次考虑每个数字。
  2. 检查能否加入:对于当前数字 n n n ,检查如果将其加入当前子集,是否会与现有元素形成幂数和。
  3. 加入决策:如果能安全加入,则加入;否则跳过。
  4. 继续处理:处理下一个数字,直到区间结束。

这样得到的子集就是字典序最小的极大子集,因为:

  • 我们总是优先考虑较小的数字
  • 一旦能加入就加入,确保得到的子集在字典序上尽可能小
  • 最终得到的子集是极大的,因为后续数字都不能再加入

检查安全性的方法

我们需要高效地检查加入数字 n n n 是否会破坏非幂性。设当前子集的所有可能的子集和为集合 S S S (包括空集和 0 0 0 )。加入数字 n n n 后,新的子集和集合将变为 S ∪ { n } ∪ { s + n ∣ s ∈ S } S \cup \{n\} \cup \{s + n \mid s \in S\} S{n}{s+nsS}

检查安全性的条件为:

  • n n n 本身不是幂数
  • 对于所有 s ∈ S s \in S sS s + n s + n s+n 不是幂数

由于 b ≤ 1000 b \leq 1000 b1000 ,最大可能的子集和不超过 1000 × 1000 / 2 = 500500 1000 \times 1000 / 2 = 500500 1000×1000/2=500500 ,我们可以预处理所有不超过 500500 500500 500500 的幂数。

算法步骤

  1. 预处理幂数:生成所有不超过 500500 500500 500500 的幂数。
  2. 对于每个测试用例
    • 初始化当前子集和集合 S = { 0 } S = \{0\} S={0} (空集的和)
    • 初始化结果集合 R = ∅ R = \emptyset R=
    • 对于 n n n a a a b b b
      • 如果 n n n 是幂数,跳过
      • 检查对于所有 s ∈ S s \in S sS s + n s + n s+n 是否是幂数
      • 如果没有冲突,将 n n n 加入 R R R ,并更新 S = S ∪ { n } ∪ { s + n ∣ s ∈ S } S = S \cup \{n\} \cup \{s + n \mid s \in S\} S=S{n}{s+nsS}
    • 输出 R R R

复杂度分析

  • 预处理幂数 O ( M log ⁡ M ) O(\sqrt{M} \log M) O(M logM) ,其中 M = 500500 M = 500500 M=500500 ,可以接受。
  • 每个测试用例
    • 最多处理 1000 1000 1000 个数字
    • 每次检查时, S S S 的大小最多约 1000 1000 1000 (实际上更少,因为很多和会重复)
    • 总操作约 1000 × 1000 = 1 0 6 1000 \times 1000 = 10^6 1000×1000=106 次,加上集合操作,可以在时限内完成。

实现细节

  • 使用 unordered_set 存储当前子集和集合,实现 O ( 1 ) O(1) O(1) 的平均查找和插入。
  • 使用两个 unordered_set 交替更新,避免频繁复制。
  • 预处理幂数数组,实现 O ( 1 ) O(1) O(1) 的幂数检查。

参考代码

// Non-Powerful Subsets
// UVa ID: 10663
// Verdict: Accepted
// Submission Date: 2025-12-15
// UVa Run Time: 0.620s
//
// 版权所有(C)2025,邱秋。metaphysis # yeah dot net

#include <bits/stdc++.h>
using namespace std;

const int MAXSUM = 500600;

bool isPower[MAXSUM];

int main() {
    cin.tie(0); cout.tie(0); ios::sync_with_stdio(false);
    // 预处理所有幂数(N^M,N>=2,M>=2)
    for (int n = 2; n * n < MAXSUM; n++) {
        int v = n * n;
        while (v < MAXSUM) {
            isPower[v] = true;
            v *= n;
        }
    }
    
    int a, b;
    while (cin >> a >> b) {
        unordered_set<int> sums[2];  // 两个集合交替使用
        vector<int> r;               // 结果集合
        int u = 0, v = 1;            // 当前和下一个集合的索引
        
        for (int n = a; n <= b; n++) {
            if (isPower[n]) continue;  // n本身是幂数,跳过
            
            // 检查是否安全:对于所有当前和s,s+n不能是幂数
            bool safe = true;
            for (auto s : sums[u]) {
                if (isPower[s + n]) {
                    safe = false;
                    break;
                }
            }
            if (!safe) continue;
            
            // 安全,加入结果
            r.push_back(n);
            
            // 更新子集和集合
            sums[v].clear();
            for (auto s : sums[u]) {
                sums[v].insert(s);
                sums[v].insert(s + n);
            }
            sums[v].insert(n);
            
            // 交换当前和下一个集合
            swap(u, v);
        }
        
        // 输出结果
        if (!r.empty()) {
            cout << r[0];
            for (size_t i = 1; i < r.size(); ++i) {
                cout << ' ' << r[i];
            }
        }
        cout << '\n';
    }
    return 0;
}

总结

本题的关键在于理解题目要求的是字典序最小的极大子集,而不是大小最大的子集。通过贪心策略,按升序处理数字,并检查加入后是否与现有元素形成幂数和,我们可以高效地得到正确答案。使用 unordered_set 存储子集和集合,以及预处理幂数数组,是算法高效运行的关键。

该算法的时间复杂度为 O ( ( b − a + 1 ) ⋅ ∣ S ∣ ) O((b-a+1) \cdot |S|) O((ba+1)S) ,其中 ∣ S ∣ |S| S 是当前子集和集合的大小,对于题目范围完全可行。

In a distributed system, a quorum is typically required to ensure consistency and prevent split-brain scenarios, where different subsets of nodes make conflicting decisions. Non-failed nodes may fail to form a quorum due to several reasons, including network partitions, configuration constraints, or the inherent design of the consensus algorithm being used. One of the key challenges in distributed systems is maintaining coordination and agreement among nodes, especially when failures occur. When a network partition occurs, nodes may be divided into isolated groups, and communication between these groups may be severed. In such cases, even though a group of non-failed nodes exists, it may not constitute a majority of the system, which is often required to achieve quorum. For example, if a system consists of five nodes and a partition separates two nodes from the remaining three, the group of two cannot form a quorum because it does not represent a majority (i.e., more than half) of the total nodes in the system[^4]. Moreover, systems that rely on consensus protocols like Paxos or Raft require a majority of nodes to agree on decisions to maintain consistency. If a subset of non-failed nodes does not include a majority, it cannot safely proceed with operations like leader election or committing new entries to the log. This limitation is by design to prevent conflicting decisions from being made by different partitions. Additionally, mechanisms like gossip protocols are employed in some distributed systems to keep track of node health and coordinate decisions. However, these protocols do not inherently resolve situations where multiple partitions exist and no single partition contains a quorum. Nodes may exchange information about the health of other nodes during these periodic interactions, but without a majority, they cannot make authoritative decisions or maintain consistency across the entire system[^2]. In summary, non-failed nodes may fail to form a quorum in a distributed system due to the inability to achieve a majority within a partition, limitations imposed by consensus algorithms, and the challenges of coordinating decisions in the presence of network partitions. ```python # Example of quorum calculation in a distributed system def has_quorum(total_nodes, available_nodes): return available_nodes > total_nodes / 2 # Check if a group of 3 nodes out of 5 can form a quorum can_form_quorum = has_quorum(5, 3) can_form_quorum ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值