大数据挖掘DT数据分析

手把手带你玩各种数据分析案例,涵盖数据分析工具使用,数据挖掘算法原理与案例,深度学习,机器学习,R语言,Python编程,爬虫。...

基于图像视觉词汇的文本分类方法(完整项目)

640?wx_fmt=gif&wxfrom=5&wx_lazy=1

 向AI转型的程序员都关注了这个号???


大数据挖掘DT数据分析  公众号: datadw


一年多以前我脑子一热,想做一款移动应用:一款给学生朋友用的“错题集”应用,可以将错题拍照,记录图像的同时,还能自动分类。比如拍个题目,应用会把它自动分类为"物理/力学/曲线运动"。当然,这个项目其实不靠谱,市场上已经有太多“搜题”类应用了。但过程很有趣,导致我过了一年多,清理磁盘垃圾时,还舍不得删掉这个项目的“成果”。


本文代码及样本数据在公众号 datadw 里 回复 文本分类  即可获取。


这个项目,核心要解决的问题就是文本分类。所以最初想到的方案是先 OCR 图片转文本,然后分词,再计算 tf-idf,最后用 SVM 分类。但这个方案的问题是:开源 OCR 普遍需要自己训练,且需要做大量的优化、调校和训练,才能在中文识别上有不错的效果,加上图像上还会有公式、几何图形,这些特征也会决定分类,这又提高了对 OCR 的要求。所以我最终选择的方案是,不使用 OCR,而是直接从图像中寻找有区分性的、鲁棒的特征,作为视觉词汇。之后再通过传统文本分类的方法,训练分类器。

下面将展示整个训练过程,训练的样本来自《2016 B版 5年高考3年模拟:高考理数》,并手工标注了14个分类,每个分类下约50个样本,每个样本为一个题目, 图像为手机拍摄。


640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1



本文中大部分算法库来自numpy、scipy、opencv、skimage、sklearn。



  1. 预处理

为了获取到稳定的特征,我们需要对图像进行预处理,包括调整图像大小,将图像缩放到合适尺寸;旋转图像,或者说调整成水平;二值化,去除色彩信息,产生黑白图像。



1.1. 调整图像大小

调整的目的是为了让图像中文字的尺寸保持大致相同的像素尺寸。这里做了一个简单假设,即:图像基本是一段完整的文本,比如一个段落,或者一页文档,那么不同的图像中,每行文本的字数相差不会很大。这样我就可以从我所了解的、少得可怜的图像工具库里找到一个工具了:直线拟合。即通过拟合的直线(线段)长度与图像宽度的比例,调整图像的大小。下图为两张不同尺寸图像,经过多次拟合+调整大小后的结果,其中红色算法检查到的直线(线段)。


640?wx_fmt=jpeg


下面是使用 opencv 直线拟合的代码:

# Canny算法提取边缘特征, image是256灰度图像

image = cv2.Canny(image, 50, 200)
# 霍夫线变换提取直线

lines = cv2.HoughLinesP(image, 2, math.pi / 180.0, 40, numpy.array([]), 50, 10)[0]


1.2. 图像二值化

二值算法选用skimage.filters.threshold_adaptive局部自适应阀值的二值化), 试下来针对这种场景,这个算法效果最好,其他算法可以去scikit-image文档了解。下图为全局阀值和局部自适应阀值的效果对比:


640?wx_fmt=jpeg

相关代码如下:

# 全局自适应阀值binary_global = image > threshold_otsu(image)
binary_global = numpy.array(binary_global, 'uint8') * 255

binary_global = cv2.bitwise_not(binary_global)
#反转黑白# 局部自适应阀值

adaptive = threshold_adaptive(image, 41, offset=10) adaptive = numpy.array(adaptive, 'uint8') * 255

adaptive = cv2.bitwise_not(adaptive)
#反转黑白

1.3. 旋转图像

从第一步获取到的直线,可以计算出图像的倾斜角度,针对只是轻微倾斜的图像,可以反向旋转进行调整。由于可能存在干扰线条,所以这里取所有直线倾斜角度的中值比平均值更合适。下图展示了图像旋转跳转前后的效果:

640?wx_fmt=jpeg

相关代码如下:

# 先计算所有线条的角度angles = []for line in lines:
    x = (line[2] - line[0])
    y = (line[3] - line[1])
    xy = (x ** 2 + y ** 2) ** 0.5
    if 0 == xy:        continue
    sin = y / xy
    angle = numpy.arcsin(sin) * 360. / 2. / numpy.pi
    angles += [angle]    # 计算中值

angle = numpy.median(angles)
# 旋转图像

image = ndimage.rotate(image, angle)

2. 提取特征

这里的思路是,首先通过形态学处理,可以分割出文本行(的图像),再从文本行中分割出词汇(的图像),然后从"词汇"中提取特征。但这里的需要克服的困难是:

  1. 很多汉字分左右部,容易被错分,比如你好, 可能被分割成以4块图像:

  2. 独立的“字”并不适合于文本分类,还需能学习出词汇。

针对以上问题的解决方案是:

  1. 将小的图像块进行组合,组合后的新图像块和原来的小块图像一起作为原始图像的特征,如你好将得到10个特征:你女你好尔女尔好

  2. 得益于上面的方案,词汇信息也被保留了下来,所以第二个问题也就解决了,同时增加了算法的鲁棒性。


下面将介绍具体实现。

2.1. 提取文本行

由于预处理过程中已经将样本的图像尺寸基本调整一致,所以可以比较容易的利用形态学的处理方法,分割出文本行。过程如下:

# cv2.Canny 可提取边缘,并去除噪点# image为调整过大小,但没有调整水平和二值化的图像

# 二值化后会影响 cv2.Canny 算法效果,所以这里用还没有二值化的图片

image = cv2.Canny(image, 100, 200)
# 二值化后调整水平image = ndimage.rotate(image, slope)
# 进行四次膨胀和腐蚀操作# 水平方向膨胀和腐蚀,联通字与字之间的空间

# 垂直方向做较小的膨胀和腐蚀,填补行内的空隙

image = cv2.dilate(image, cv2.getStructuringElement(cv2.MORPH_RECT, (40, 3))) image = cv2.erode(image, cv2.getStructuringElement(cv2.MORPH_RECT, (40, 3))) image = cv2.erode(image, cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))) image = cv2.dilate(image, cv2.getStructuringElement(cv2.MORPH_RECT, (6, 5)))

下图展示了每一步的变化:

640?wx_fmt=jpeg


接下来可以利用scipy库中的measurements.label方法,标记出不同的的区域,下图展示了标注后的效果,不同区域以不同的灰度表示。

640?wx_fmt=png

相关代码如下:

# image 为上一步形态学处理后的图像

image = 1 * (image > 64)
# 只保留灰度>64的区域,可以去除一些躁点

labeled, count = measurements.label(image)
# labeled为一个和图像尺寸一致的矩阵,矩阵中每个元素的值即这个像素位置所属的区域索引

# count为区域数量figure() gray() imshow(labeled) show()

接下来根据标记的区域,可从图像中裁剪出每行的数据,如下图:

640?wx_fmt=png

相关代码如下:

def bounding_box(src):
    '''
    矩阵中非零元素的边框
    '''
    B = numpy.argwhere(src)    if B.size == 0:        return [0, 0, 0, 0]
    (ystart, xstart), (ystop, xstop) = B.min(0), B.max(0) + 1
    return [xstart, ystart, xstop - xstart, ystop - ystart]    def clip_lines(image, labeled, count)
    lines = []        for i in range(1, count + 1):
        temp = image.copy()
        temp[labeled != i] = 0
        box = bounding_box(temp)
        x, y, w, h = box
        data = temp[y:y + h, x:x + w]
        lines.append(data)  
    return lines


2.2. 提取特征(视觉词汇)

裁剪出单行文本图像后,我们可以将图像中各列的像素的值各自累加,得到一个一纬数组,此数组中的每个局部最小值所在的位置,即为文字间的空隙。如下图所示,其中蓝色线为像素值的累加值,绿色线为其通过高斯滤波平滑后的效果,红色线为最终检测到的分割点。

640?wx_fmt=png

详细过程见下面代码:

# 1. 将图像中每一列的所有像素的值累加orisum = image.sum(axis=0) / 255.0

# 2. 累加后的数组通过高斯滤波器做平滑处理,减少干扰

filtered = filters.gaussian_filter(orisum, 8)
# 3. 找出拐点(上升转下降、下降转上升的点)trend = False
 # False 下降,True上升preval = 0  
# 上一个值points = []  # 拐点pos = 0for i in filtered:  
 if preval != i:      
 if trend != (i > preval):            trend = (i > preval)            points += [[pos if pos == 0 else pos - 1, preval, orisum[pos]]]    pos = pos + 1    preval = i # 4. 下降转上升的拐点即为分割点  ... 代码略 ...

将单行的图像按上述方法获取的分割点进行裁剪,裁剪出单个字符,然后再把相邻的单个字符进行组合,得到最终的特征数据。组合相邻字符是为了使特征中保留词汇信息,同时增加鲁棒性。下图为最终获得的特征信息:

640?wx_fmt=png

本文中使用的所有样本,最终能提取出约30万个特征。


2.3. 选择特征描述子

选择合适的特征描述子通常需要直觉+运气+不停的尝试(好吧我承认这里没有什么经验可分享),经过几次尝试,最终选中了HOG(方向梯度直方图)描述子。HOG 最让人熟悉的应用领域应该是行人检测了,它很适合描述钢性物体的边缘特征(方向),而印刷字体首先是刚性的,其次其关键信息都包含在边缘的方向上,所以理论上也适合用 HOG 描述。更多关于HOG的介绍请点击这里

https://link.jianshu.com/?t=http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html#sphx-glr-auto-examples-features-detection-plot-hog-py


下图为文字图像及其 HOG 描述子的可视化:

640?wx_fmt=png

代码如下:

# 提取边缘canny = cv2.Canny(numpy.uint8(img), 50, 200)
# 计算描特征描述子desc, hog_image = hog(    canny,    orientations=6,    pixels_per_cell=(4, 4),    cells_per_block=(2, 2),    visualise=True)

3. 训练词汇分类器

对词汇进行人工标注工作量太大,所以最好能做到自动分类。我的做法是先聚类,再基于聚类的结果训练分类器。但有个问题,主流的聚类算法中,除了 K-Means 外,其他都不适合处理大量样本(目前有30万+样本),但 K-Means 在这个场景上聚类效果不佳,高频但不相关的词汇容易被聚成一类,而 DBSCAN 效果很好,但样本数一多,所需时间几何级增长(在我的机器上,超过两万个样本就需要耗费数个小时)。下图来自sklearn 文档,对各聚类算法做了比较:

640?wx_fmt=png

640?wx_fmt=png

2017/09/21 修改:原此处选择的聚类方法(即先使用先用 K-Means 做较少的分类然后对每个分类单独使用 DBSCAN 聚类并单独训练 SVC 分类器),准确率保持在70%左右,很难提高,故改用了下面描述的新方法。



本文来自 微信公众号 datadw  【大数据挖掘DT数据分析】


为解决这一问题,我的做法是:
1.  先对每类样本下的词汇用 DBSCAN 聚类(约1万个词汇样本),得到一级分类。
2. 聚类后,计算每个一级分类的中心,然后以所有中心为样本再用DBSCAN聚类,得到二级分类。完成后,原一级分类中心的新分类,即代表其原一级分类下所有元素的分类。

聚类的过程为,使用前面提取的 HOG 特征,先 PCA 降纬,再 DBSCAN 聚类。这里注意,计算二级分类时,PCA应使用全局样本计算。


分类器使用SGDClassifier,原因是其支持分批计算,不至于导致内存不足。

本文中使用的样本,最终得到3000+词汇类型。下图为分类效果,其中每一行为一个分类:

640?wx_fmt=png

4. 训练文本分类器

有了词汇分类器,我们终于可以识别出每个文本样本上所包含的词汇了(事实上前面步骤的中间过程也能得到每个样本的词汇信息),于是我们可以给每个样本计算一个词袋模型(即用每个词出现的次数表示一篇文本),再通过池袋模型计算TF-IDF模型(即用每个词的 TF*IDF 值表示一篇文本),并最终训练 SVM 分类器。下面展示了此过程的主要代码:


640?wx_fmt=jpeg


Fitting the classifier to the training set done in 0.034s score : 0.918639053254Predicting on the test set done in 0.004s               precision    recall  f1-score   support    物理-电学-静电场       1.00      0.67      0.80         3   物理-力学-互相作用       0.56      1.00      0.71         5  物理-机械振动和机械波       0.83      1.00      0.91         5   物理-电学-电磁感应       0.71      1.00      0.83         5   物理-电学-恒定电流       1.00      1.00      1.00         5   物理-力学-曲线运动       0.88      0.78      0.82         9 物理-机械能及其守恒定律       0.62      0.56      0.59         9        物理-光学       1.00      0.50      0.67        
2物理-力学-万有引力与航天       1.00      0.75      0.86         4 物理-力学-牛顿运动定律       0.62      0.71      0.67         7   物理-电学-交变电流       1.00      1.00      1.00         1     物理-电学-磁场       1.00      0.25      0.40         4        物理-热学       1.00      1.00      1.00        
2物理-力学-质点的直线运动       0.86      0.86      0.86         7  avg / total       0.81      0.78      0.77        68

[[2 0 0 0 0 0 1 0 0 0 0 0 0 0] [0 5 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 5 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 5 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 5 0 0 0 0 0 0 0 0 0] [0 1 0 0 0 7 0 0 0 0 0 0 0 1] [0 2 0 0 0 1 5 0 0 1 0 0 0 0] [0 0 0 0 0 0 0 1 0 1 0 0 0 0] [0 0 0 0 0 0 1 0 3 0 0 0 0 0] [0 1 0 0 0 0 1 0 0 5 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 1 0 0 0] [0 0 0 2 0 0 0 0 0 1 0 1 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 2 0] [0 0 1 0 0 0 0 0 0 0 0 0 0 6]]


测试集上正确率 81%,召回率 78%。个别分类正确率较低,可能是因为样本数太少,另外训练过程大多使用默认参数,若进行细致调校,应该还有提高空间。

https://www.jianshu.com/p/f774e273a883


人工智能大数据与深度学习

搜索添加微信公众号:weic2c

640?wx_fmt=png

长按图片,识别二维码,点关注



大数据挖掘DT数据分析

搜索添加微信公众号:datadw


教你机器学习,教你数据挖掘

640?wx_fmt=jpeg

长按图片,识别二维码,点关注



阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭