卷积神经网络(CNN)融合PMF模型构建推荐系统

转载 2018年04月13日 00:00:00

640?wx_fmt=gif&wxfrom=5&wx_lazy=1

 向AI转型的程序员都关注了这个号???


大数据挖掘DT数据分析  公众号: datadw


本文全部代码 github 地址

在公众号 datadw 里 回复 CNN  即可获取。


深度学习在推荐系统上的运用,具体用了卷积神经网络(CNN)提取文本特征,融合PMF模型进行推荐。


具体论文见http://dm.postech.ac.kr/~cartopy/ConvMF/


用户对项目评分数据的稀疏是推荐系统质量恶化的主要因素之一。为了处理稀疏性问题,已经提出了几种推荐技术,其另外考虑辅助信息以提高评估预测的准确性。特别是,当评级数据稀少时,基于文档建模的方法通过额外使用文本数据(如评论,摘要或概要)提高了准确性。然而,由于单词模型的固有局限性,它们难以有效地利用文档的上下文信息,这导致对文档的浅薄理解。本文提出了一种新的上下文感知推荐模型,卷积矩阵分解(ConvMF),将卷积神经网络(CNN)集成到概率矩阵分解(PMF)中。因此,ConvMF可以捕获文档的上下文信息并进一步提高评分预测的准确性。我们对三个真实世界的数据集进行的广泛评估表明,即使评分数据非常稀少,ConvMF也远远优于最先进的推荐模型。我们还证明了ConvMF成功捕获文档中单词的细微差异。



640?wx_fmt=png&wxfrom=5&wx_lazy=1


图1. ConvMF概述 


左图是集成了概率矩阵分解(PMF)模型和卷积神经网络(CNN)模型的ConvMF的概率图形模型,右图是CNN模型利用项目描述的详细架构文档。 使用从CNN模型获得的文档潜在向量作为项目变量(V)的高斯分布的均值,其作为CNN和PMF之间的桥梁起着重要作用,有助于完整分析描述文档和评分。 有关更多详细信息,请参阅我们的论文。

http://dl.acm.org/citation.cfm?id=2959165



640?wx_fmt=png


上表显示了每个测试集上五种方法的整体评级预测误差。 请注意,每个数据集都被随机分成一个训练集(80%),一个验证集(10%)和一个测试集(10%)。 “提高”表明“ConvMF”相对于最佳竞争对手的相对改进。 与三种模型相比,ConvMF和ConvMF +在所有数据集上都取得了重大改进。


预训练词嵌入模型的影响:


640?wx_fmt=png


两幅图介绍了ConvMF的预训练词嵌入模型的影响。 左图显示了ConvMF +与ConvMF在三种不同λv数据集上的相对改进。 随着数据更加严重偏斜(即亚马逊即时视频),预先训练的词嵌入模型的影响也会增加。 请注意,高的λv值会导致ConvMF和ConvMF +尝试利用超过评分的项目描述文档。 右图显示了字词嵌入模型的维度大小对Amazon Instant Video数据集的影响。 由于模型中包含的信息越来越丰富,ConvMF +的测试误差随着预先训练的字嵌入模型的尺寸大小变得越来越小而降低。



640?wx_fmt=png


该图显示了三种方法对spaseness数据集的ConvMF的改进。 ConvMF在所有范围内都超过了三个竞争对手,而且我们可以看到,当数据密度增加时,这些改进会增加。 这表明ConvMF的CNN已经很好地整合到PMF中,用于评估信息的推荐任务。



人工智能大数据与深度学习

搜索添加微信公众号:weic2c

640?wx_fmt=png

长按图片,识别二维码,点关注



大数据挖掘DT数据分析

搜索添加微信公众号:datadw


教你机器学习,教你数据挖掘

640?wx_fmt=jpeg

长按图片,识别二维码,点关注

基于模型融合的推荐系统实现(1):基于SGD的PMF

(1)PMF算法PMF的基本的思路,就是定义两个基本的参数W,U,然后对于任意一个组合(u,m),利用Wi∗UjW^i*U^j,来获取预测值。这些基本的算法思路网上很多,就不细说了。简单说一下程序[0...
  • pp634077956
  • pp634077956
  • 2016-11-29 19:03:37
  • 744

推荐系统总结MF->PMF->CTR->CDL->CNN

推荐系统总结推荐系统总结 数据集分析 矩阵分解MF 基于概率的矩阵分解PMF 扩展篇 标签推荐 首先进行数据集的分析,然后 介绍矩阵分解方法(MF)、基于概率的矩阵分解(PMF); 在此基础...
  • lmm6895071
  • lmm6895071
  • 2017-07-22 09:47:31
  • 2778

Deep Learning-TensorFlow (8) CNN卷积神经网络_《TensorFlow实战》及经典网络模型(上)

由黄文坚所写的《TensorFlow实战》第6章讲解了关于四大经典 CNN 网络:AlexNet、VGGNet、Google Inception Net 和 ResNet 的基本原理。本文主要节选自作...
  • u013751160
  • u013751160
  • 2017-04-06 12:40:49
  • 3032

利用卷积神经网络(CNN)构造社区问答系统

问答社区算是一类已经比较成熟的互联网应用了,国外的比如Quora、StackOverflow,国内的比如老派的百度知道,新一代的知乎,都算是代表性的社交类问答社区。问答社区本质上就是个人肉知识库,通过...
  • malefactor
  • malefactor
  • 2015-12-21 20:25:21
  • 14591

(6) Deep Learning模型之:CNN卷积神经网络之深度解析CNN

本文转载自其他文章,并对文章中极少数的部分错误点进行了改正。 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流。 1. 概述      卷积...
  • baidu_32134295
  • baidu_32134295
  • 2016-10-10 11:53:25
  • 2691

【推荐系统算法】PMF(Probabilistic Matrix Factorization)

细读论文:现代推荐系统的基础算法之一PMF。
  • shenxiaolu1984
  • shenxiaolu1984
  • 2016-01-27 15:02:12
  • 16768

Deep Learning-TensorFlow (10) CNN卷积神经网络_ TFLearn 快速搭建深度学习模型

TFLearn 是一个构建在 TensorFlow 之上的模块化和透明的深度学习库。它为 TensorFlow 提供高层次 API,目的是便于快速搭建试验环境,同时保持对 TensorFlow 的完全...
  • u013751160
  • u013751160
  • 2017-04-10 17:12:24
  • 3376

几种使用了CNN(卷积神经网络)的文本分类模型

谈到文本分类,就不得不谈谈CNN(Convolutional Neural Networks)。这个经典的结构在文本分类中取得了不俗的结果,而运用在这里的卷积可以分为1d 、2d甚至是3d的。 下面...
  • guoyuhaoaaa
  • guoyuhaoaaa
  • 2016-11-16 17:27:25
  • 11331

基于模型融合的推荐系统实现(3):模型融合

基本思路很简单,最小二乘法就好了:我们假设两个算法得到的结果权重分别是a,b利用最小二乘法和我们分出来的第二部分数据就可以获取a,b使得误差最小。其实最小二乘法就是求一个广义的逆即可。最后的RMSE比...
  • pp634077956
  • pp634077956
  • 2016-11-29 19:19:21
  • 1018
收藏助手
不良信息举报
您举报文章:卷积神经网络(CNN)融合PMF模型构建推荐系统
举报原因:
原因补充:

(最多只允许输入30个字)