无向图的DFS做法判断环是否存在只用在有向图的基础上加个prev即可。因为无相图的A-B如果没有prev可能被误判断为有环。只有当next!=prev的时候我才遍历。
如何正确 detect cycle?
-
用 int[] 表示每个点的状态,其中
-
0 代表“未访问”;
-
1 代表“访问中”;
-
2 代表“已访问”;
-
-
如果在循环的任何时刻,我们试图访问一个状态为 “1” 的节点,都可以说明图中有环。
-
如何正确识别图中 connected components 的数量?
-
添加任意点,探索所有能到达的点,探索完毕数量 +1;
-
如此往复,直到已探索点的数量 = # of V in graph 为止。
-
BFS 做法,时间复杂度 O(E + V);
-
Graph Valid Tree
public class Solution {
public boolean validTree(int n, int[][] edges) {
int[] states = new int[n];
ArrayList[] graph = new ArrayList[n];
for(int i = 0; i < n; i++){
graph[i] = new ArrayList();
}
for(int[] edge : edges){
graph[edge[0]].add(edge[1]);
graph[edge[1]].add(edge[0]);
}
Queue<Integer> queue = new LinkedList<>();
queue.offer(0);
states[0] = 1;
int count = 0;
while(!queue.isEmpty()){
int node = queue.poll();
count ++;
for(int i = 0; i < graph[node].size(); i++){
int next = (int) graph[node].get(i);
if(states[next] == 1) return false ;
else if(states[next] == 0){
states[next] = 1;
queue.offer(next);
}
}
states[node] = 2;
}
return count == n;
}
}