深度学习
文章平均质量分 88
冯爽朗
这个作者很懒,什么都没留下…
展开
-
利用多重映射从本地查看集群的tensorboard
训练过程的可视化对实验的成功是非常重要的,tensorboard工具强大,能够提供很好的可视化数据分析。由于本实验室集群上没有可视化端口,从本地查看集群任务的tensorboard着实有点费劲,下面说一下查看教程。思路: 可以将集群的tensorboard端口(一般是6006)映射到本地端口。情况介绍: 实验室集群分为计算节点cu01,cu02,...原创 2019-05-17 13:26:58 · 1492 阅读 · 3 评论 -
应用于语义分割问题的深度学习技术综述
欢迎加群825524664(深度学习交流)原文见Arxiv:A Review on Deep Learning Techniques Applied to Semantic Segmentation。 摘要 计算机视觉与机器学习研究者对图像语义分割问题越来越感兴趣。越来越多的应用场景需要精确且高效的分割技术,如自动驾驶、室内导航、甚至虚拟现实与增强现实等。这...翻译 2018-09-29 20:25:24 · 5288 阅读 · 1 评论 -
U-net源码讲解(Keras)
更新:这个项目是2018.8月份写的,时间过得真快,现在都快一年了,其实深度学习这方面各种软硬件更新很快。如果你是新手学Unet,那么用keras版的也是蛮好的,但是到最后有自己的一点需求后再在此基础上搭自己的模块后Keras就显得很麻烦了,你需要考虑很多东西,比如张量对齐一类的,甚至调试都很难,因为Keras是基于tensorflow的,现在pytorch由于它简单灵活的特性被广泛使用,...原创 2018-08-30 11:01:29 · 44081 阅读 · 162 评论 -
Keras模型讲解
keras是一个开源是的python深度学习库,可以基于theano或者tenserflow,下面大体介绍下keras的几个重要模块。重要的模块1、优化器(optimizers)优化器是调整每个节点权重的方法,看一个代码示例:model = Sequential() model.add(Dense(64, init='uniform', inpu...原创 2018-09-01 19:41:36 · 2946 阅读 · 0 评论 -
ImageDataGenerator生成器的flow,flow_from_directory用法
flow:flow(self, X, y, batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_format='png'):接收numpy数组和标签为参数,生成经过数据提升或标准化后的batch数据,并在一个无限循环中不断的返回batch数据 x:样本数据,秩应为4.在黑白图像的情况...原创 2018-08-29 19:57:40 · 87633 阅读 · 22 评论 -
如何防止过拟合
通常过拟合由以下三种原因产生:1. 假设过于复杂;2. 数据存在很多噪音;3. 数据规模太小。 过拟合的解决方法通常有:1. early stopping;2. 数据集扩增;3. 正则化;4. Dropout。Early stopping:对模型的训练过程就是对模型参数的进行学习更新的过程。参数学习的过程中往往会用到一些迭代算法,比如梯度下降法。Early stopping的目的就是在迭...转载 2018-08-29 16:08:51 · 362 阅读 · 0 评论 -
U-net论文解析
论文题目:U-Net: Convolutional Networks for Biomedical Image Segmentation论文地址:https://arxiv.org/pdf/1505.04597v1.pdf本论文主要亮点:(1)改进了FCN,把扩展路径完善了很多,多通道卷积与类似FPN(特征金字塔网络)的结构相结合。(2)利用少量数据集进行训练测试,为医学图像分割做...原创 2018-08-24 21:18:12 · 38634 阅读 · 9 评论 -
Keras的自定义lambda层去reshape张量时model保存出错的解决办法
前几天忙着参加一个AI Challenger比赛,一直没有更新博客,忙了将近一个月的时间,也没有取得很好的成绩,不过这这段时间内的确学到了很多,就在决赛结束的前一天晚上,准备复现使用一个新的网络UPerNet的时候出现了一个很匪夷所思,莫名其妙的一个问题。谷歌很久都没有解决,最后在一个日语网站上看到了解决方法。事后想想,这个问题在后面搭建网络的时候会很常见,但是网上却没有人提出解...原创 2018-10-15 15:07:22 · 3907 阅读 · 2 评论 -
Dual Attention Network for Scene Segmentation讲解
• paper: https://arxiv.org/abs/1809.02983• code: https://github.com/junfu1115/DANet原创 2018-10-17 15:50:33 · 20887 阅读 · 9 评论 -
VS code 选择指定环境下的python运行代码
VS code安装后运行python的时候会有疑问,我到底是在哪个python环境在运行的呢,我本来有三个环境:base,tensorflow,pytorch,之前用终端运行的时候是"activate pytorch"去激活环境然后运行,但是这此怎么办?答案就是看看左下角是不是你需要的环境,之前我的不是,上面显示的是base,怎么才能切换到指定的pytorch环境?1.ctrl+s...原创 2019-04-16 16:37:52 · 26207 阅读 · 1 评论 -
2018 AI Challenger全球AI挑战赛‘眼底水肿病变区域自动分割’赛道比赛总结
2018 AI Challenger全球AI挑战赛‘眼底水肿病变区域自动分割’赛道比赛总结苏州的十月,无论是天气还是桂香都觉得让人无所适从,忙碌的低年级学生一阵风似的从身边经过,恍惚才觉得,这是我最真真切切的体会到的苏州的秋,大概是因为快离开这个校园的缘故吧,一切都是那么匆忙,就连一场夜间的秋雨都是那么急促而又清冷。这...原创 2019-04-02 13:33:16 · 1742 阅读 · 10 评论 -
OCNet: Object Context Network for Scene Parsing (Microsoft Research)论文解析
不得不说,这篇论文和DANet撞车了,而且撞的死死的,用的同样的核心内容,为什么会撞车,那是因为,两个篇文章都套用了同一篇文章的方法,同时想到了一起,你说巧不巧不同于之前图像级的context的方法,这篇论文提出逐像素的object context,object context由像素P所对应的类别的物体组成。由于测试时不知道标签信息,所以用Self Attention方法通过学习逐像素的相似度...原创 2018-12-07 13:23:04 · 10839 阅读 · 10 评论 -
Keras下的多GPU训练和测试——以U-net为例
先上主函数代码:# -*- coding: utf-8 -*-from model import *from data import *#导入这两个文件中的所有函数from keras.utils import multi_gpu_modelimport tensorflow as tf#os.environ["CUDA_VISIBLE_DEVICES"] = "0"from m...原创 2018-12-13 15:13:03 · 4360 阅读 · 10 评论 -
Hyperas - 在Keras中自动选择超参数
Hyperas - 在Keras中自动选择超参数深度学习做到后面都剩下调参数而参数又不是那么容易调整,是个废力又废时的工作这边将介绍透过Hyperas这个套件,自动选择符合模型最好的参数安装Hyperas使用pip进行安装$ pip install hyperas导入Hyperasfrom hyperopt import Trials, STATUS_OK, tp...原创 2018-12-13 14:50:23 · 8710 阅读 · 28 评论 -
PSPNet模型源码解析
from __future__ import print_functionfrom math import ceilfrom keras import layersfrom keras.layers import Conv2D, MaxPooling2D, AveragePooling2Dfrom keras.layers import BatchNormalization, Activ...原创 2018-11-27 15:41:31 · 3061 阅读 · 0 评论 -
KL散度、JS散度、Wasserstein距离
原文链接:https://zxth93.github.io/2017/09/27/KL%E6%95%A3%E5%BA%A6JS%E6%95%A3%E5%BA%A6Wasserstein%E8%B7%9D%E7%A6%BB/index.html1. KL散度KL散度又称为相对熵,信息散度,信息增益。KL散度是是两个概率分布P和Q 差别的非对称性的度量。 KL散度是用来 度量使用基于Q的编码...转载 2018-11-18 18:16:34 · 1211 阅读 · 0 评论 -
VAE(可变自动编码)
什么是变分自动编码器?为了理解VAE,我们首先从最简单的网络说起,然后再一步一步添加额外的部分。 一个描述神经网络的常见方法是近似一些我们想建模的函数。然而神经网络也可以被看做是携带信息的数据结构。 假如我们有一个带有解卷积层的网络,我们设置输入为值全为1的向量,输出为一张图像。然后,我们可以训练这个网络去减小重构图像和原始图像的平均平方误差。那么训练完后,这个图像的信息就被保...翻译 2018-11-07 13:48:01 · 1717 阅读 · 0 评论 -
MS-NFN Model for Retinal Vessel Segmentation(血管分割)
论文题目:Multiscale Network Followed Network Model for Retinal Vessel Segmentation论文地址:Multiscale Network Followed Network Model for Retinal Vessel Segmentation The Core Content Of This Article:...原创 2018-11-02 10:13:20 · 3466 阅读 · 0 评论 -
利用卷积神经网络对DWI的急性缺血性病变进行全自动分割
论文题目:Fully automatic acute ischemic lesion segmentation in DWI usingconvolutional neural networks论文地址:(PDF) Fully Automatic Acute Ischemic Lesion Segmentation in DWI Using Convolutional Neural N...原创 2018-11-06 14:26:50 · 1435 阅读 · 1 评论 -
Keras中poly学习策略的实现
前言: 在各种论文中,我见到过最多的优化器就是SGD,虽然Adam,Nadam很潮,优点很多,但是我也不知道为啥,那些很优秀的论文总是喜欢用SGD,或许是因为SGD的学习率和和decay可‘手动’调节的缘故吧,SGD的学习率衰减策略有很多,接下来就讲解一个各个衰减策略,以及poly衰减策略的实现,另一方面是网上基本上是没有Keras上实现poly的代码,经过我一个下午的...原创 2018-10-17 17:25:07 · 9677 阅读 · 6 评论 -
FCN——Semantic Segmentation的开山之作之论文解析
今天介绍一篇图像语义分割的开山之作——FCN(全卷积网络)论文题目:Fully Convolutional Networks for Semantic Segmentation论文地址:https://arxiv.org/abs/1411.4038这是一篇发表在2015 CVPR上的一篇论文,拿到了当年的best paper honorable mention如果你会分类网络...原创 2018-08-21 20:27:42 · 19394 阅读 · 3 评论 -
反卷积(Transposed Convolution, Fractionally Strided Convolution or Deconvolution)
反卷积(Deconvolution)的概念第一次出现是Zeiler在2010年发表的论文Deconvolutional networks中,但是并没有指定反卷积这个名字,反卷积这个术语正式的使用是在其之后的工作中(Adaptive deconvolutional networks for mid and high level feature learning)。随着反卷积在神经网络可视化上的成功应...转载 2018-08-28 21:26:37 · 1441 阅读 · 0 评论 -
random模块学习
random模块用于生成随机数,下面看看模块中一些常用函数的用法:numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点数组。#numpy.random.rand(d0, d1, ..., dn)import numpy as np#无参np.random.rand()#生成生成[0,1)之间随机浮点数type(np.random.ran...转载 2018-07-04 16:53:13 · 550 阅读 · 0 评论 -
为什么说随机最速下降法(SGD)是一个很好的方法?
最近在看梯度下降算的时候不明白梯度下降算法经常达到局部极小值为什么还要用它,然后就在知乎上看到了这篇文章,将了包括SDG算法的优缺点,我觉得这个是最直接,也是最清晰的解释了,没有之一,好文!!!地址:https://zhuanlan.zhihu.com/p/27609238假如我们要优化一个函数 ,即找到它的最小值, 常用的方法叫做Gradient Descent (GD), 也就是...转载 2018-04-24 21:18:33 · 1118 阅读 · 0 评论 -
Video you only look once: Overall temporal convolutions for action recognition论文解析
论文地址: https://www.sciencedirect.com/science/article/pii/S1047320318300233?via%3Dihub 这两天读了一个关于视频中动作识别的论文,属于分类网络,就是将短视频中正在进行的是某个动作识别出来(一个视频只有一种动作),先说一下主要流程吧: 这个论文虚的很!特能吹!其实3页的内容写了整整八页,全TM是废话!...原创 2018-04-19 22:44:20 · 524 阅读 · 0 评论 -
ImportError: No module named cv2的完美解决方法!!!(不能太赞)
此刻是2018年1月21日晚10点13分,我怀着激动的心情,从Ubuntu系统上登上我的CSDN博客然后发来贺电,祝贺我自己解决了ImportError: No module named cv2的问题,这仿佛是从另一个世界(Ubuntu世界)向现实世界(windows世界)通话,很奇妙! 事情还要从遥远的下午4点半说起,那是时候我还是个孩子,天真烂漫的孩子,在我的Ubun...原创 2018-01-21 23:06:12 · 148566 阅读 · 37 评论 -
CPU下用VOC2007数据或者自己的数据来训练Faster RCNN
1.caffe下CPU的训练和GPU的训练有很大不同,要修改很多,这里前提是你已经配置好了CPU下的caffe,接下来就是用数据来训练网络了。2.主要思路: (1)准备数据,这里以VOC2007数据为例 (2)下载网络ImageNet,为什么要下载网络,因为如果你单纯的从0(各权重参数随机初始化)开始训练faster RCNN网...原创 2018-03-22 14:51:30 · 428 阅读 · 0 评论 -
如何安装Anaconda以及Tensorflow
Python易用,但用好却不易,其中比较头疼的就是包管理和Python不同版本的问题,特别是当你使用Windows的时候。为了解决这些问题,有不少发行版的Python,比如WinPython、Anaconda等,这些发行版将python和许多常用的package打包,方便pythoners直接使用,此外,还有virtualenv、pyenv等工具管理虚拟环境。个人尝试了很多类似的发行...原创 2018-03-30 20:52:01 · 855 阅读 · 3 评论 -
TensorFlow下用自己的数据训练Fater-RCNN
环境:Linux系统,GPU1.首先在GitHub上找到这个源码 ,然后根据下面的ReadMe教程一步步跑通,建议先用VOC2007数据集训练,可以先把迭代次(在/FRCN_ROOT/experiments/scripts/faster_rcnn_end2end.sh文件下)数从7000改成100,只是测试有没有问题,节省时间,中途会遇到一些错误,你可以根据源码上面的issue来找解决方案,一般错...原创 2018-04-05 16:41:54 · 507 阅读 · 0 评论 -
You Only Look Once: Unified, Real-Time Object Detection 论文笔记
名字解析: 论文中有一句话是这样描述的: Using our system, you only look once (YOLO) at an image to predict what objects are present and where they are,大意是:使用我们的系统,您只需要看一次图像(YOLO),就能预测出现在的物体是什么以及他们的位置。显然,这是相对于RCNN系列网...原创 2018-04-08 22:20:28 · 414 阅读 · 2 评论 -
YOLOv2目标检测详解
前言: 原论文网址:《YOLO9000: Better, Faster, Stronger》 项目地址:http://pjreddie.com/darknet/yolo/ 原论文中其实讲了两个部分: 一,YOLOv1如何优化成YOLOv2的,以及YOLOv2的一些详细介绍。 二,YOLO9000的介绍,这个是基于YOLOv2结构的9000多类目标的检测。 由于t...原创 2018-04-10 20:28:12 · 14307 阅读 · 6 评论 -
YOLOv3论文解析: An Incremental Improvement
先说一些题外话:作者真的6,骨骼清奇的写了一个随笔式的论文,比如开头就写: 有时,你一整年全在敷衍了事而不自知。比如今年我就没做太多研究,在推特上挥霍光阴,置 GANs 于不顾。凭着上年余留的一点动力,我成功对 YOLO 做了一些升级。但实话讲,没什么超有趣的东西,只不过是些小修小补。同时我对其他人的研究也...原创 2018-04-12 21:11:40 · 12734 阅读 · 8 评论 -
深度学习面试
对应岗位为:基础研究或图像相关岗位,题目来源自同学们的汇总。。 一部分是我自行总结的,所以也不一定正确,欢迎捉虫。每个问题都不停止的追问自己为什么,因为在面试中面试官肯定会不停的追问的。–2017.9.7之所以现在才发,是因为之前曾经有面试官照着我这篇东西问我(因为写了博客地址),而现在,完全没在怕的~ 提供的回答仅供参考,不一定对。存在一些没有提供参考回答的,纯粹因为我懒了 。。 以及没有概括到...转载 2018-04-19 10:55:10 · 1696 阅读 · 0 评论 -
C3D 工程中input_data.py文件解析
项目地址:https://github.com/hx173149/C3D-tensorflow# Copyright 2015 Google Inc. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except ...原创 2018-05-10 15:12:01 · 830 阅读 · 0 评论 -
C3D-network论文笔记
前几天一直在看Faster-Rcnn源码和YOLOv3(C语言)源码,感觉时间浪费了不少,但是一个都没有看懂,总结出一句话就是:这TM写的是个啥?我为啥一个都看不懂,原理理解是一回事,看懂代码是一回事,至于自己上手敲更是另外一回事了,后来想想,我没看懂也是有道理的,因为我没有花那么多的时间去看,只看了两三天,有些代码真的不懂,也没有去深究,所有以至于整个都没有看懂,问了一个看完Fas...原创 2018-04-26 20:59:49 · 35356 阅读 · 14 评论 -
Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服。当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡...转载 2018-06-01 16:15:02 · 444 阅读 · 1 评论 -
Tensorflow中保存与恢复模型tf.train.Saver类讲解(恢复部分模型参数的方法)
有兴趣的可以加qq群点击链接加入群聊【深度学习交流】: 前几天一直在修改模型,但是在修改的时候要加载原始预训练模型,我现在修改过的模型(现模型)有新加的参数,而有些预训练模型中的参数也没有用到,所以这样的情况下对于预训练模型来说,就相当于加载部分模型参数了,然后现模型中的剩余的参数就通过手动初始化完成,其实在加载模型的时候就相当于初始化参数。 也就是说...原创 2018-06-01 11:25:15 · 19224 阅读 · 5 评论 -
说出来你可能不相信,我在用命令行给你发微信
用命令行发微信,试过吗?很有趣,更有趣的是用for循环,简单教程如下:先安装itchat包:pip install itchat然后:>>python再然后就可以用命令行运行python代码import itchatusers=itchat.search_friends(name=u'马熠辉')#可以是备注名字,也可以是昵称userName=users[0]['UserName']...原创 2018-06-07 19:27:06 · 3847 阅读 · 0 评论 -
Keras Image Data Augmentation 各参数详解
图像深度学习任务中,面对小数据集,我们往往需要利用Image Data Augmentation图像增广技术来扩充我们的数据集,而keras的内置ImageDataGenerator很好地帮我们实现图像增广。但是面对ImageDataGenerator中众多的参数,每个参数所得到的效果分别是怎样的呢?本文针对Keras中ImageDataGenerator的各项参数数值的效果进行了详细解释,为各位...原创 2018-06-06 20:43:21 · 4141 阅读 · 3 评论 -
Tensorflow中tf.conv2d_transpose()的操作
我先解释一下必要信息:tf.conv2d_transpose(value, filter, output_shape, strides, padding="SAME", data_format="NHWC", name=None) 除去name参数用以指定该操作的name,与方法有关的一共六个参数: 第一个参数value:指需要做反卷积的输入图像,它要求是一个Tensor...原创 2018-05-24 20:28:22 · 17714 阅读 · 5 评论
分享