智能座舱中的DMS(Driver Monitoring System)——分心与疲劳检测
在智能汽车领域,DMS系统扮演着至关重要的角色,尤其是在提高驾驶安全性和舒适性方面。DMS能够实时监测驾驶员的状态,包括但不限于注意力分散、疲劳驾驶等潜在危险行为,从而采取相应的预警或干预措施。本文将深入探讨DMS中分心与疲劳检测的核心技术原理,特别是算法细节及背后的数学模型。
一、分心检测技术原理
1.1 视觉注意力分析
视觉注意力分析主要利用计算机视觉技术,通过对驾驶员头部姿态、视线方向及面部表情的综合分析,判断其注意力是否集中在驾驶任务上。
-
算法框架:主要采用基于深度学习的目标检测网络(如YOLO, Faster R-CNN),结合面部关键点检测(如Dlib)来识别驾驶员头部位置、视线方向以及面部表情。
-
核心算法:
-
头部姿态估计:头部姿态估计通过构建3D人脸模型,并结合2D图像中的关键点位置来拟合头部的三维姿态。使用最小二乘法拟合头部姿态参数θ,其中 θ = [ α , β , γ ] T θ = [α, β, γ]^T θ=[α,β,γ]T分别代表俯仰角、偏航角和滚动角。
θ = arg min θ ∑ i = 1 N ( p i − P ( θ ) ) 2 \theta = \arg\min_{\theta} \sum_{i=1}^{N}(p_i - P(\theta))^2 θ=argθmini=1∑N(pi−P(θ))2
其中, p i p_i pi是第i个关键点的2D投影坐标, P ( θ ) P(\theta) P(θ)是根据头部姿态参数计算的3D模型的2D投影。实际应用中,常用的方法包括:
- PnP(Perspective-n-Point)算法:通过已知的3D点和其在图像中的2D投影点来计算摄像机的姿态。
- AAM(Active Appearance Model):结合形状和纹理信息,利用统计模型拟合人脸特征。
-
视线方向估计:视线方向估计通过眼动跟踪技术,结合眼球中心位置和瞳孔反射点的位置,计算视线向量v,进而推断视线方向。
v = p e y e − p p u p i l ∥ p e y e − p p u p i l ∥ v = \frac{p_{eye} - p_{pupil}}{\|p_{eye} - p_{pupil}\|} v=∥peye−ppupil
-