视觉感知算法
文章平均质量分 93
有啥问啥
一个人的成熟,从3次放下开始:①放下过去的遗憾;②放下心中的攀比;③放下无谓的担忧。
个人Github主页:https://wocantudou.github.io/
展开
-
【有啥问啥】OneEuro滤波:高效平滑噪声信号的利器
OneEuro滤波器是一种自适应低通滤波器,最早由Géry Casiez等人在2012年提出,专为动态、噪声数据的实时平滑设计。它能够灵活调整平滑度,以应对各种变化速度的信号。这种滤波器在低速变化时可有效去除抖动,而在信号快速变化时可减少延迟,广泛应用于VR(虚拟现实)、AR(增强现实)、交互系统和运动捕捉等领域。OneEuro滤波器的核心优势在于其自适应能力。与传统低通滤波器相比,它根据信号的变化速度动态调整滤波参数,在保持信号响应性的同时,最大限度地减少噪声和抖动。原创 2024-11-12 01:15:00 · 800 阅读 · 0 评论 -
【有啥问啥】Alpha Matting:精准图像分割的艺术
Alpha Matting作为一种精准的图像分割技术,在图像处理领域发挥着重要作用。通过估计每个像素的透明度值,它实现了前景和背景之间的平滑过渡,为图像合成、背景替换、图像修复和游戏开发等领域提供了强大的支持。随着计算机视觉技术的不断发展,Alpha Matting技术将会得到更广泛的应用和发展。未来,我们可以期待更加高效、准确的Alpha Matting算法的出现,以及更多应用场景的拓展和创新。不断改进的深度学习技术和优化算法,将为Alpha Matting带来新的突破,推动图像处理领域的前进。原创 2024-10-28 01:15:00 · 1787 阅读 · 0 评论 -
【有啥问啥】图割(Graph Cut)算法:图像分割的利器
图割算法是一种强大的图像分割工具,在计算机视觉领域有着广泛的应用。尽管存在一些缺点,但随着计算机硬件性能的不断提升和算法的优化,图割算法仍然是图像分割研究的热点。通过结合其他特征和先验知识,以及引入改进和优化方法,图割算法在未来将继续发挥重要作用。原创 2024-10-28 00:15:00 · 1159 阅读 · 0 评论 -
【有啥问啥】DINO:一种改进的去噪锚框的端到端目标检测器
在目标检测领域,DINO(DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection)是一种创新的端到端目标检测模型,旨在解决传统目标检测算法中的一些关键问题,如收敛速度慢、训练时间长以及对小物体的处理困难等。本文将详细介绍DINO的原理、技术改进、实验结果以及其在计算机视觉任务中的卓越表现。原创 2024-10-26 01:15:00 · 1250 阅读 · 0 评论 -
【有啥问啥】探索DETR:基于Transformer的目标检测框架
DETR,全称Detection Transformer,是Facebook AI研究团队提出的一种基于Transformer的端到端目标检测网络。DETR是第一篇将Transformer成功整合到目标检测流程中的算法,它摒弃了传统的基于锚框(anchor-based)的检测方法,以及非极大值抑制(NMS)等手工设计的后处理步骤,实现了更加简洁和高效的目标检测。传送门链接:大语言模型系列-Transformer介绍。原创 2024-10-26 00:15:00 · 1941 阅读 · 0 评论 -
【有啥问啥】张正友标定法浅谈
相机标定旨在建立相机坐标系与世界坐标系之间的数学关系,从而实现三维重建、增强现实、机器人视觉等任务。其主要目的是确定相机的内参数和外参数。内参数: 描述了相机的固有特性,包括焦距、主点坐标、畸变系数等。外参数: 描述了相机在世界坐标系中的位置和姿态,包括旋转矩阵和平移向量。张正友标定法是一种经典且有效的相机标定方法,在计算机视觉领域有着广泛的应用。本文详细介绍了张正友标定法的原理、步骤、优缺点以及应用,并提供了相关的代码示例。通过深入理解张正友标定法,可以为后续的计算机视觉研究和应用打下坚实的基础。原创 2024-10-25 01:15:00 · 782 阅读 · 0 评论 -
【有啥问啥】视频插帧算法技术原理详解
视频插帧(Video Interpolation)技术,作为计算机视觉领域的一项重要应用,旨在通过算法手段在已有的视频帧之间插入额外的帧,从而提升视频的帧率,使其看起来更加流畅。这一技术不仅广泛应用于电影特效、视频游戏、运动捕捉等领域,还随着计算机视觉和深度学习技术的飞速发展,不断取得新的突破。本文将全面而深入地介绍插帧算法的技术原理,涵盖其发展历程、核心原理、常用方法、实现细节以及应用领域,以期为相关领域的从业人员和研究人员提供有价值的参考。原创 2024-10-25 00:15:00 · 1355 阅读 · 0 评论 -
【有啥问啥】智能座舱中的ADDW认证是什么?
ADDW认证作为智能座舱领域的一项重要安全认证,正逐步成为提升行车安全的新标准。通过严格的测试和认证流程,ADDW系统能够实时监测驾驶员的视线方向,判断驾驶员是否处于分心状态,并及时发出警告,从而有效减少因驾驶员分心导致的交通事故。随着技术的不断进步和市场的日益成熟,ADDW认证将为更多汽车厂商所采用,为消费者提供更加安全、智能的驾驶体验。这不仅将提升道路安全水平,还将推动汽车行业的智能化和可持续发展。原创 2024-10-24 08:56:47 · 960 阅读 · 0 评论 -
【有啥问啥】智能座舱中的儿童遗留检测(CPD,Child Presence Detection)技术详解
CPD系统作为一项重要的车辆安全技术,对于保护儿童免受因被遗忘在车内而导致的热中暑危险具有重要意义。随着技术的不断进步和法规的推动,CPD系统将在未来得到广泛应用和普及。我们有理由相信,在不久的将来,CPD将成为所有新车的标配功能之一,为儿童乘车安全提供更加坚实的保障。同时,我们也期待更多的技术创新和突破能够不断涌现,为智能座舱和车联网技术的发展注入新的活力和动力。通过全社会的共同努力和合作,我们可以为家庭和社会创造一个更加安全、舒适、便捷的出行环境。原创 2024-10-23 10:44:37 · 989 阅读 · 0 评论 -
【有啥问啥】SlowFast网络:计算机视觉中的视频理解新范式
SlowFast网络是一种创新的双模态卷积神经网络(CNN),它利用两个并行的CNN流——慢速流(Slow)和快速流(Fast)——来分别处理视频中的静态和动态信息。慢速流专注于捕捉全局空间信息,如场景布局和物体结构;而快速流则专注于捕捉短期运动信息,如物体的运动轨迹和速度变化。原创 2024-10-18 10:54:34 · 1445 阅读 · 2 评论 -
【有啥问啥】亚像素卷积(Sub-pixel Convolution):深入浅出图像超分辨率技术
亚像素卷积作为一种高效的超分辨率方法,凭借其简单、快速和效果优异的特点,在图像处理领域有着广泛的应用前景。通过对其原理、实现细节、实验对比的详细解析,本文希望为读者提供一个清晰的理解路径,帮助大家更好地应用这一技术。原创 2024-10-15 16:13:07 · 1016 阅读 · 0 评论 -
【有啥问啥】深度探索:COG Agent与GUI Agent的工作原理与实施策略
COG Agent是一个专注于图形界面自动化的工具,依托于大规模视觉语言模型(VLM),其主要功能包括界面元素的自动识别、理解和操作。COG Agent无需依赖文本或DOM解析,而是通过感知界面图像内容直接做出操作决策。其强大的视觉和语言处理能力,使其在面对动态、复杂的GUI任务时表现出色。原创 2024-10-08 10:35:33 · 1115 阅读 · 0 评论 -
【有啥问啥】SE(Squeeze-and-Excitation)架构详解
在深度学习,特别是计算机视觉领域,卷积神经网络(CNN)的发展日新月异。为了进一步提升CNN的特征提取能力和模型性能,研究者们不断探索新的网络架构和组件。其中,Squeeze-and-Excitation(SE)架构作为一种创新的特征重标定机制,自提出以来便受到了广泛的关注和应用。本文将详细解析SE架构的工作原理、实现方式、优势及其在不同网络架构中的应用。原创 2024-10-05 01:15:00 · 1050 阅读 · 0 评论 -
【有啥问啥】SimAM(Similarity-Aware Activation Module)注意力机制详解
SimAM是一种基于特征图局部自相似性的注意力机制。它通过计算特征图中每个像素与其周围像素之间的相似性,来动态地调整每个像素的权重,从而实现对重要特征的增强和对不相关特征的抑制。SimAM的创新之处在于其无参数特性,使得模型在保持较低复杂度的同时,依然能够取得出色的性能。原创 2024-10-02 01:15:00 · 1143 阅读 · 0 评论 -
【有啥问啥】多目标跟踪SORT算法原理详解
SORT算法是一种基于检测跟踪(tracking-by-detection)框架的在线多目标跟踪算法。它依赖于目标检测算法提供的边界框信息,通过关联连续帧中的目标来构建和更新目标的轨迹。SORT算法的核心思想可以概括为三个步骤:检测、关联和更新。SORT算法作为一种经典的在线多目标跟踪算法,以其简单高效和实时性强的特点在多个领域得到了广泛应用。然而,它也存在一些不足之处,如对复杂场景的鲁棒性较差、容易产生ID切换问题等。原创 2024-09-30 01:15:00 · 1067 阅读 · 0 评论 -
【有啥问啥】具身智能(Embodied AI):人工智能的新前沿
具身智能作为人工智能的一个重要分支,具有广阔的应用前景和深远的社会影响。通过不断的研究和探索,具身智能将在未来为人类社会带来更多的便利和福祉。同时,我们也需要关注其可能带来的挑战和问题,并积极寻求解决方案以确保其健康发展。原创 2024-09-29 01:15:00 · 2111 阅读 · 0 评论 -
【有啥问啥】语义分割(Semantic Segmentation)、实例分割(Instance Segmentation)与全景分割(Panoptic Segmentation)傻傻分不清?
语义分割旨在将图像中的每个像素分配到一个预定义的类别中,以实现对图像内容的深入理解。它关注的是图像中的“stuff”部分,即那些广泛分布且通常不可数的背景元素,如天空、草地、道路等。通过语义分割,我们可以获得图像中每个像素的类别信息,从而构建出图像的语义地图。实例分割的目标是将图像中的每个个体对象分割出来,并为每个对象赋予唯一的标识。与语义分割不同,实例分割不仅要识别每个对象的类别,还需要区分不同对象之间的实例。例如,在一张包含多辆汽车的图像中,实例分割会分别识别出每辆汽车,并为它们分配不同的标识符。原创 2024-09-29 00:15:00 · 1188 阅读 · 0 评论 -
【有啥问啥】计算机视觉领域中的光流(Optical Flow)是什么?
光流(Optical Flow)是计算机视觉领域中的一个核心概念,用于描述在连续图像帧中物体的运动。具体来说,光流是指图像中像素的运动矢量场,它描述了每个像素点在两帧图像之间的位移。这一概念对于诸如目标跟踪、运动估计、视频稳定、增强现实等任务至关重要。vxyuv其中,u和v分别表示像素在x和y方向的速度。在计算光流时,目标是根据时间上相邻的图像帧,估计每个像素点的运动方向和速度。原创 2024-09-12 01:15:00 · 1329 阅读 · 0 评论 -
【有啥问啥】探索扫地机器人中的 SLAM 算法:原理、实现与未来展望
SLAM 是解决机器人在未知环境中边构建地图边确定自己位置的核心问题。定位(Localization):通过传感器,机器人在未知地图中确定自己当前的具体位置。建图(Mapping):实时绘制并更新周围环境的地图。对扫地机器人来说,SLAM 是实现高效清扫的关键,因为机器人需要知道哪些区域已经清扫,哪些区域仍待处理。SLAM 技术的成熟推动了扫地机器人等智能设备的广泛应用。在未来,随着算法和硬件的进步,SLAM 将进一步提升扫地机器人的自主性与智能化水平,推动智能家居的进一步发展。原创 2024-09-11 00:15:00 · 2016 阅读 · 0 评论 -
【有啥问啥】GANs与Diffusion Models对比:GANs是否已过时?
生成对抗网络(Generative Adversarial Networks,GANs)自2014年由Ian Goodfellow等人提出以来,已经成为生成模型领域的重要技术。GANs在图像生成、风格迁移、文本到图像生成等应用中取得了显著的成果。然而,近年来,扩散模型(Diffusion Models)异军突起,特别是在生成质量上展现出更强的竞争力。本文将深入探讨GANs的原理、优缺点,并将其与Diffusion Models进行对比,探讨GANs是否已被淘汰的问题。原创 2024-09-10 01:15:00 · 1536 阅读 · 0 评论 -
【有啥问啥】人脸质量评价:深入解析和实现
随着人工智能和计算机视觉技术的飞速发展,人脸识别已成为许多领域的关键技术之一。然而,人脸识别的准确性高度依赖于输入的人脸图像质量。因此,人脸质量评价作为人脸识别前的预处理步骤,其重要性不言而喻。本文将深入探讨几种主要的人脸质量评价方法的实现细节,包括图像清晰度、对比度、明亮度、人脸位置与大小、人脸角度以及光照归一化等方面的技术实现。原创 2024-08-27 01:15:00 · 1346 阅读 · 0 评论 -
【有啥问啥】目标检测:从主干网络到检测头的全面剖析
目标检测作为计算机视觉领域的一个重要研究方向,旨在从图像或视频中自动识别并定位出感兴趣的目标。近年来,随着深度学习技术的飞速发展,基于卷积神经网络(CNN)的目标检测模型取得了显著进展,广泛应用于智能座舱、自动驾驶、智能监控、机器人视觉等场景中。然而,在这些应用中,模型的实时性和检测精度之间常常存在权衡问题。本文将深入剖析标准目标检测模型的主要组成部分,包括主干网络、颈部网络和检测头,并探讨它们在模型中的关键作用及发展趋势。原创 2024-08-26 01:15:00 · 1570 阅读 · 0 评论 -
【有啥问啥】开放词汇目标检测(Open-Vocabulary Object Detection, OVOD)算法是什么?
开放词汇目标检测是一种目标检测任务,旨在检测和识别那些未在训练集中明确标注的物体类别。传统的目标检测模型通常只能识别有限数量的预定义类别,而OVOD模型则具有识别“开放词汇”类别的能力,即在测试时可以识别和定位那些未曾在训练集中见过的类别。原创 2024-08-16 00:15:00 · 2574 阅读 · 1 评论 -
【有啥问啥】人工智能应用中的恐怖谷效应是什么?
恐怖谷效应作为一个复杂且多维度的心理现象,对现代技术的设计和应用产生了深远的影响。理解和应对这一效应不仅对于机器人和虚拟角色的设计至关重要,也对提升用户体验、增强人机交互的自然性具有重要意义。在未来,随着技术的不断进步,如何更好地管理和利用恐怖谷效应,将成为设计师和工程师们面临的持续挑战。原创 2024-08-16 02:30:00 · 1724 阅读 · 0 评论 -
【有啥问啥】通道与空间的双重增强的CBAM注意力机制是什么?
通道注意力模块(Channel Attention Module)和空间注意力模块(Spatial Attention Module)。这两个模块分别在通道维度和空间维度上对特征进行增强。通道注意力模块:主要关注特征图中哪些通道(即特征的类别)对最终结果更重要,从而对这些通道赋予更高的权重。空间注意力模块:主要关注特征图中哪些空间位置包含更为关键的信息,从而对这些位置赋予更高的权重。通过这两个模块的逐步处理,CBAM能够细化特征的表达,提高模型的预测能力。原创 2024-08-10 14:00:00 · 2827 阅读 · 0 评论 -
【有啥问啥】深度学习任务中的 Zero-shot、One-shot 和 Few-shot 是什么?
Zero-shot、One-shot 和 Few-shot 学习是处理数据稀缺问题的有效策略。在计算机视觉领域,它们为不同的数据场景提供了灵活的解决方案。Zero-shot 学习依赖于语义描述和先验知识,One-shot 学习依赖于度量学习和生成模型,而 Few-shot 学习则利用数据增强和模型正则化技术。通过了解这些方法的原理和应用场景,我们可以更好地设计和优化深度学习模型。原创 2024-08-02 15:43:57 · 2197 阅读 · 0 评论 -
奥比中光astra_pro相机使用记录
环境下配置了opencv版本比较多,导致,字符串类型的数据乱码。a.用于快速查看相机是否安装正确;:但是执行时仍然出现运行不了等问题。b.可以可视化调整参数和显示效果。根据对应的型号找到需要的包工具。可以直接按照官方的开发手册安装。原创 2024-07-04 09:29:11 · 1359 阅读 · 2 评论 -
相机标定浅谈
在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,这些几何模型参数就是相机参数。在大多数条件下这些参数必须通过实验与计算才能得到,这个求解参数的过程就称之为相机标定(或摄像机标定)。原创 2024-07-04 09:13:49 · 1406 阅读 · 0 评论 -
【有啥问啥】目标检测技术概述与最新进展
目标检测技术在过去的几十年里取得了长足的进步,从传统的滑动窗口和HOG-SVM方法,到深度学习时代的R-CNN和YOLO系列,再到如今的Transformers和自监督学习方法。每一次技术革新都带来了检测精度和速度的提升。相信在不久的将来,随着计算机视觉技术的不断发展,目标检测将会在更多实际应用中发挥更大的作用。希望本文能够帮助读者了解目标检测的经典方法和最新进展。如果您对这些方法感兴趣,可以阅读相关的论文,深入了解其原理和实现细节。原创 2024-07-02 11:51:16 · 1132 阅读 · 0 评论 -
互联网场景下人脸服务基线方案总结
1.1序号术语或缩略语说明性定义12345671.4从人脸服务基线的测试结果中,可以看出,在当前的测试标准下,人脸服务的效果不理想,最大的召回率和准确率都比较低,其中的问题有的是出现在测试标准中所以需要对测试的指标重新进行制定,也有的问题是出现在服务,所以需要对人脸服务引擎本身进一步的优化。原创 2024-07-01 14:40:08 · 1015 阅读 · 0 评论 -
互联网场景下人脸服务解决方案优化设计
1.1序号术语或缩略语说明性定义12345671.4。原创 2024-07-01 14:25:41 · 1110 阅读 · 0 评论
分享