大模型
文章平均质量分 95
有啥问啥
一个人的成熟,从3次放下开始:①放下过去的遗憾;②放下心中的攀比;③放下无谓的担忧。
个人Github主页:https://wocantudou.github.io/
展开
-
【有啥问啥】SmoothQuant:大模型量化的高效利器
SmoothQuant由麻省理工学院(MIT)的Han Lab提出,是一种针对大模型的训练后量化方法。其核心理念在于平衡激活值和权重的量化难度,通过逐通道缩放平滑激活值分布,减少离群点的影响,从而实现高精度的模型压缩与加速。SmoothQuant的出现,为大型语言模型的量化提供了一种新的解决方案,有助于推动AI技术的广泛应用。SmoothQuant作为一种创新的训练后量化方法,通过平滑因子和逐通道缩放技术,巧妙地解决了大模型中激活值的量化难题。原创 2024-11-12 00:15:00 · 626 阅读 · 0 评论 -
【有啥问啥】DINO:一种改进的去噪锚框的端到端目标检测器
在目标检测领域,DINO(DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection)是一种创新的端到端目标检测模型,旨在解决传统目标检测算法中的一些关键问题,如收敛速度慢、训练时间长以及对小物体的处理困难等。本文将详细介绍DINO的原理、技术改进、实验结果以及其在计算机视觉任务中的卓越表现。原创 2024-10-26 01:15:00 · 1250 阅读 · 0 评论 -
【有啥问啥】探索DETR:基于Transformer的目标检测框架
DETR,全称Detection Transformer,是Facebook AI研究团队提出的一种基于Transformer的端到端目标检测网络。DETR是第一篇将Transformer成功整合到目标检测流程中的算法,它摒弃了传统的基于锚框(anchor-based)的检测方法,以及非极大值抑制(NMS)等手工设计的后处理步骤,实现了更加简洁和高效的目标检测。传送门链接:大语言模型系列-Transformer介绍。原创 2024-10-26 00:15:00 · 1941 阅读 · 0 评论 -
【有啥问啥】大型语言模型的涌现能力(Emergent Abilities):新一代AI的曙光
涌现能力是LLM发展过程中一个令人兴奋的现象,它标志着人工智能向通用人工智能迈出了重要的一步。尽管仍面临诸多挑战,但涌现能力的潜力是无限的。通过持续的研究和探索,我们有理由相信,LLM将在未来为人类社会带来更多的福祉。随着技术的进步,涌现能力不仅将改变我们的工作和生活方式,也将引领人类向更深层次的智能探索迈进。原创 2024-09-27 01:15:00 · 1369 阅读 · 0 评论 -
【有啥问啥】Chain of Goal-Oriented Reasoning(CoGOR)原理详解
Chain of Goal-Oriented Reasoning(CoGOR)作为一种具有强大潜力的推理范式,为实现真正意义上的智能提供了新的思路。通过深入研究 CoGOR 的原理与应用,我们不仅能够更好地理解人类的思维过程,还能开发出更加智能的机器。随着人工智能技术的不断发展,CoGOR 的应用前景广阔,期待未来在更多领域实现突破性进展。原创 2024-09-25 00:15:00 · 937 阅读 · 0 评论 -
【有啥问啥】深度剖析:大模型AI时代下的推理路径创新应用方法论
处理大规模AI任务时,首先需要明确问题的背景和任务目标。对于大模型,特别是生成式模型,我们通常需要提供明确的输入上下文,并设定具体的任务要求。应用场景:在文本生成任务中,通过明确给出问题背景(如提问、上下文),大模型可以从海量语料中提取相关信息,生成合理的推理路径。在此案例中,推理路径提供了清晰的逻辑链条,使得系统的诊断过程透明且可解释。通过思维链策略,模型不仅给出了最终的诊断结果,还详细展示了每一步推理的依据,确保医生和患者能够理解AI系统的决策过程。原创 2024-09-23 01:15:00 · 980 阅读 · 0 评论 -
【有啥问啥】探索累计推理(Cumulative Reasoning, CR)——大型语言模型中的复杂推理新框架
累计推理为复杂推理任务提供了创新解决方案,显著提升了LLMs在逻辑推理和数学难题中的表现。展望未来,CR框架有望为各个领域带来深远影响,助力AI技术的全面发展。原创 2024-09-23 00:15:00 · 1440 阅读 · 0 评论 -
【有啥问啥】OpenAI o1的思考之前训练扩展定律、后训练扩展定律与推理扩展定律:原理与应用详解
前训练扩展定律研究的是模型在预训练阶段,性能如何随着参数规模数据量和计算资源的增加而变化。这类扩展规律揭示了损失函数(Loss Function)如何随训练规模的扩展逐渐降低,但随着模型规模和数据量的增加,性能提升会逐渐趋缓,出现收益递减现象。LNDCL0α⋅N−β1γ⋅D−β2δ⋅C−β3LNDCL0α⋅N−β1γ⋅D−β2δ⋅C−β3NNN:模型参数规模DDD:训练数据量CC。原创 2024-09-21 01:15:00 · 1683 阅读 · 0 评论 -
【有啥问啥】深入解析 OpenAI o1 模型家族:推理能力的跃升与应用场景
OpenAI 推出的 o1 模型家族代表了人工智能在推理能力方面的一个重要里程碑。其在处理复杂问题和多步骤任务中的表现令人印象深刻,尤其是在编程、科学和法律等领域展示了巨大潜力。随着 o1 模型的不断推广和优化,其未来的应用前景无疑将为各行业带来更多的创新和变革。原创 2024-09-19 01:15:00 · 911 阅读 · 0 评论 -
【有啥问啥】探索PlanSearch:提升大型语言模型代码生成能力的创新方法
PlanSearch是一种新型代码生成策略,通过自然语言形式的规划而非直接生成代码片段,探索问题的多种解决路径。这使得LLMs能够在更高的抽象层次上进行推理,生成更加多样且高质量的代码。生成初步观察:模型接收到问题陈述后,生成一系列关于该问题的自然语言描述(初步观察)。这些观察通常是对问题的基本理解、约束条件以及潜在的解决方向。组合观察形成规划:PlanSearch通过将多个初步观察组合,形成多个候选规划。每个规划代表不同的潜在解决路径,并且可以进行递归操作,生成更复杂的高阶规划。生成解决方案思路。原创 2024-09-19 00:15:00 · 1086 阅读 · 0 评论 -
【有啥问啥】降低Attention计算量的Flash Attention到底做了什么?
Flash Attention和Flash Decoding通过创新的块化处理、内存优化和增量注意力机制,极大地提高了Transformer模型的计算效率。它们不仅减少了训练和推理过程中的计算量,还显著降低了内存消耗,使得在更长的输入序列和更大规模模型上实现高效推理成为可能。随着Transformer应用的不断扩展,Flash Attention和Flash Decoding将在更多的领域中发挥关键作用。原创 2024-09-18 00:15:00 · 1235 阅读 · 0 评论 -
【有啥问啥】自动提示词工程(Automatic Prompt Engineering, APE):深入解析与技术应用
自动提示词工程(APE)是指通过算法或机器学习模型自动生成、优化或筛选提示词,以提高语言模型在特定任务中的性能。与人工设计提示词不同,APE 可以通过分析大量样本数据或任务需求,生成最佳的提示词,以便让模型更准确地理解和生成目标文本。APE 不仅节省了手动设计提示词的时间,还可以探索更复杂和多样化的提示词模式,以进一步挖掘大语言模型的潜力。例如,在 few-shot 和 zero-shot 学习场景中,APE 能通过更精确的提示词设计提升模型在未知任务上的表现。原创 2024-09-16 00:15:00 · 1872 阅读 · 0 评论 -
【有啥问啥】刷爆各大榜单的Reflection 70B模型背后的错误自我纠正(Reflection-Tuning)技术解析:一种革新AI模型的方法
推理过程监控实时追踪:模型在生成答案的每一步都会记录其推理路径,包括使用的数据、逻辑链条以及中间结果。合理性评估:利用内置的评估机制,对每一步推理的合理性进行即时评估,确保逻辑连贯性和数据准确性。错误检测多维度分析:模型不仅检查语法和拼写错误,还深入分析逻辑错误、事实错误以及潜在的偏见。模式识别:通过学习大量错误案例,模型能够识别常见的错误模式,并对其进行预警。错误纠正重新推理:在检测到错误后,模型会回溯到出错的步骤,重新进行推理,寻找正确的答案。假设调整。原创 2024-09-13 00:15:00 · 1238 阅读 · 0 评论 -
【有啥问啥】GANs与Diffusion Models对比:GANs是否已过时?
生成对抗网络(Generative Adversarial Networks,GANs)自2014年由Ian Goodfellow等人提出以来,已经成为生成模型领域的重要技术。GANs在图像生成、风格迁移、文本到图像生成等应用中取得了显著的成果。然而,近年来,扩散模型(Diffusion Models)异军突起,特别是在生成质量上展现出更强的竞争力。本文将深入探讨GANs的原理、优缺点,并将其与Diffusion Models进行对比,探讨GANs是否已被淘汰的问题。原创 2024-09-10 01:15:00 · 1536 阅读 · 0 评论 -
【有啥问啥】HashHop在LTM-2-mini中的应用:解锁长期记忆模型的新纪元
HashHop是Magic团队为LTM-2-mini设计的一种全新评估与推理机制,旨在解决传统模型在处理超长上下文时的语义提示、新近性偏差以及哈希冲突等问题。其核心思想是通过哈希函数生成稳定的哈希对,使模型在长序列中保持对关键信息的精准捕捉和推理。HashHop在LTM-2-mini中的应用标志着人工智能技术在处理超长上下文方面取得了显著进展。通过其创新的哈希机制、多跳推理和优化算法,LTM-2-mini不仅提升了模型的推理能力和计算效率,还为未来更高级别智能系统的构建提供了重要的技术基础。原创 2024-09-10 00:15:00 · 900 阅读 · 0 评论 -
【有啥问啥】LTM-2-mini背后实现1亿token上下文窗口的序列维度算法:颠覆传统序列建模的新范式
传统的序列处理模型,如RNN和Transformer,虽然在很多任务中表现优异,但在处理极长序列时仍然面临显著的挑战。RNN的顺序依赖性导致难以并行处理序列,而Transformer则由于其自注意力机制,计算复杂度会随着序列长度的增加呈二次方增长,从而限制了它在长序列任务中的应用。序列维度算法作为一种创新的序列建模范式,为高效处理序列数据提供了新的思路和方法。LTM-2-mini模型的成功应用不仅证明了该算法的可行性和有效性,还展示了其在多个领域的广阔应用前景。原创 2024-09-09 01:15:00 · 1152 阅读 · 0 评论 -
【有啥问啥】数字孪生(Digital Twin)技术在人工智能中的应用
数字孪生技术的概念最早由NASA提出,用于宇航器的模拟和维护。简单来说,数字孪生是一种将物理实体在数字空间中进行精确建模和实时更新的技术。这种虚拟模型不仅仅是物理对象的静态复制品,更是能够反映对象在现实世界中状态和行为的动态系统。数字孪生不仅限于单一对象的模拟,还可扩展至复杂系统,涵盖物理、化学、社会行为等多维度特性。术语解释:数字孪生 vs. 数字模型:数字孪生不仅仅是一个静态的数字模型,它是一个能够动态反映物理实体状态的虚拟镜像。原创 2024-09-09 00:15:00 · 1342 阅读 · 0 评论 -
【有啥问啥】什么是扩散模型(Diffusion Models)?
扩散模型是一种概率生成模型,其生成过程可以被视为一个逐渐消除噪声的过程。具体来说,扩散模型通过模拟一个反向的马尔可夫链来逐步将噪声还原为目标数据。这个反向过程的基础是一个正向的扩散过程,在该过程中,数据逐渐被添加噪声,最终接近一个简单的分布(如标准高斯分布)。扩散模型的训练目标是学习这个反向过程,使得模型能够从纯噪声生成出逼真的样本。传送门链接:多维高斯分布(Multivariate Gaussian Distribution,MGD)的采样过程是什么样的?原创 2024-09-07 01:15:00 · 2307 阅读 · 0 评论 -
【有啥问啥】大模型应用中的哈希链推理任务
哈希链推理任务是在哈希链基础上进行逻辑推理和验证的任务,旨在确保数据处理和模型推理过程的可信性。验证推理过程的完整性:通过构建推理过程中的哈希链,确保每一步推理都没有被篡改。验证数据处理的完整性:在分布式数据处理环境中,使用哈希链验证数据在各处理步骤中的一致性。认证生成内容的可信性:利用哈希链确保生成的内容在传输和处理过程中未被篡改。保护数据隐私和安全:通过哈希链保证在敏感数据处理过程中数据的隐私性和安全性。原创 2024-09-07 00:15:00 · 1109 阅读 · 0 评论 -
【有啥问啥】神经符号学策略:融合神经网络与符号推理的强大力量
神经网络在图像识别、自然语言处理等领域取得了显著的成果,但其在处理复杂推理任务、解释性以及常识知识方面仍存在局限性。而传统的符号推理方法虽然在逻辑推理方面表现出色,却难以处理海量数据和复杂的模式。为了克服这些限制,(Neuro-Symbolic AI)应运而生,它将神经网络的学习能力与符号推理的逻辑推理能力相结合,旨在打造更强大、更智能的人工智能系统。在人工智能发展的早期阶段,研究者们就面临着选择路径的问题:一方面是以逻辑和规则为基础的符号AI;原创 2024-09-06 00:15:00 · 1239 阅读 · 0 评论 -
【有啥问啥】微软开源的Graph RAG技术:原理、应用与未来
Graph RAG是一种将图结构数据与检索增强生成技术相结合的框架。图数据建模:利用图神经网络对图数据进行建模。信息检索:结合检索增强生成技术,从外部知识库中检索相关信息。生成模型:在生成阶段,利用检索到的信息和图数据进行生成任务。这种结合不仅提升了生成模型的准确性,还增强了其处理复杂查询的能力。原创 2024-09-05 01:15:00 · 1157 阅读 · 0 评论 -
【有啥问啥】AI模型:追求全能还是专精?
全能型AI和专精型AI各有其独特的优势和挑战。在未来的发展中,这两类AI可能会逐渐融合,形成既具备广泛适应性又能够在特定领域中表现出色的新型AI模型。无论如何,在选择和应用AI模型时,我们需要充分考虑实际需求、技术可行性和道德规范,以实现AI技术的最大化价值。原创 2024-09-04 01:15:00 · 1049 阅读 · 0 评论 -
【有啥问啥】图灵奖获得大佬Yann LeCun看好的模型预测控制(MPC)策略是什么?
本文将深入解析MPC的基本原理、优势与挑战,并通过一个通俗易懂的案例来展示MPC在实际应用中的效果。未来,随着自适应MPC、分布式MPC、机器学习与MPC的结合,我们可以期待MPC在更多复杂系统中的广泛应用,尤其是在智能驾驶、能源管理等前沿领域。在每个时间步,MPC将预测小车在未来若干步内的轨迹,基于当前状态和可能的控制输入。例如,MPC可能会选择一个稍微调整方向盘的角度来保持在道路中心,同时不做出过大的调整,以避免剧烈晃动。通过MPC,系统能够动态调整控制输入,以保持在道路中心并应对道路上的变化。原创 2024-09-03 00:15:00 · 1205 阅读 · 0 评论 -
【有啥问啥】理解大模型中的Cursor技术:优化长文本推理的前沿方案
Cursor技术为大型语言模型在处理长文本时提供了一种创新的解决方案。通过引入光标机制和上下文窗口的动态管理,Cursor技术不仅提高了模型的推理效率,还增强了其在复杂任务中的表现。未来,随着技术的不断发展,Cursor技术将在自然语言处理领域中发挥越来越重要的作用,为解决长文本处理的挑战提供更加成熟的解决方案。未来的研究可以进一步探索Cursor技术与其他技术的结合,以实现更强大的长文本处理能力,满足日益复杂的自然语言处理需求。原创 2024-09-02 01:15:00 · 1193 阅读 · 0 评论 -
【有啥问啥】号称放弃Scaling Law,另辟蹊径的内生复杂性类脑网络的AI框架是什么?
内生复杂性是指系统通过内部动态交互和自组织过程产生的复杂结构和行为。与外部刺激引发的外生复杂性不同,内生复杂性源自系统内部的动力学,是其固有特性。自组织系统在自然界中广泛存在,如蚁群、生态系统等,通过这些系统的研究,我们可以更深入理解内生复杂性在类脑网络中的表现。原创 2024-08-31 00:15:00 · 2084 阅读 · 0 评论 -
【有啥问啥】变分自编码器(Variational Autoencoder, VAE):深入理解与应用
在深度学习的广阔领域中,生成模型一直是研究的热点之一。其中,VAE(变分自编码器)作为AE(自编码器)的一种扩展,以其独特的优势在生成任务中展现了卓越的性能。本文将深入探讨VAE相对于AE的改进之处,并解析这些改进如何提升模型的生成能力和泛化性能。原创 2024-08-30 00:15:00 · 2625 阅读 · 1 评论 -
【有啥问啥】人工智能中的世界模型(World Models):详尽解析与未来展望
世界模型是AI系统内部构建的一种抽象表示,用于描述、理解和预测外部环境的状态及其变化。它融合了AI系统从传感器接收的原始数据(如图像、声音、触觉等),通过复杂的处理和分析,形成对外部世界的全面认知和预测。在具体实现中,世界模型可以以多种形式存在,如概率模型、物理模型、生成模型等。每种模型都有不同的结构和特性,但其核心目标是通过对历史数据的学习和理解,形成对未来事件和状态的预测。假设我们正在设计一个简化版的迷宫游戏。原创 2024-08-28 01:15:00 · 2449 阅读 · 0 评论 -
【有啥问啥】自编码器(Autoencoder, AE):深入理解与应用
自编码器(Autoencoder, AE)是一种通过无监督学习方式来学习数据有效表示的神经网络模型。其核心思想是通过编码器将输入数据压缩成低维潜在表示,然后通过解码器从该表示中重构出原始输入数据。自编码器在数据降维、特征提取、数据去噪、异常检测以及生成模型等领域均展现出卓越的性能。本文将深入探讨自编码器的原理、结构、变体、应用场景、实践案例和面临的挑战与机遇。原创 2024-08-24 01:15:00 · 2303 阅读 · 2 评论 -
【有啥问啥】OpenMax算法详解:深度学习中的高效开集识别技术
OpenMax算法是一种基于深度神经网络的开集识别方法,它通过对模型输出的激活向量进行后处理,实现了对未知类别的有效识别。该算法的核心思想是利用已知类别的统计特性来推断未知类别的存在。原创 2024-08-23 03:00:00 · 2698 阅读 · 1 评论 -
【有啥问啥】Q*算法深度猜想:从Q-learning优化到智能决策
在强化学习中,Q-learning是一种基于价值函数的方法。智能体通过与环境交互学习一个Q值函数QsaQ(s, a)Qsa,其中sss代表状态,aaa代表动作。Q值函数反映了在状态sss采取动作aaa后,未来所能获得的期望累积奖励。Q-learning的目标是通过迭代更新Q值函数,找到一个能够最大化累积奖励的最优策略。原创 2024-08-22 01:30:00 · 1298 阅读 · 0 评论 -
【有啥问啥】人格凭证(PHC):一种鉴别AI防伪保护隐私的真实身份验证技术
人格凭证(PHC)是一种创新的数字身份验证技术,旨在证明用户是真实存在的人类而非AI,同时保护用户的个人隐私信息不被泄露。PHC结合了“现实世界的验证”和“安全的加密技术”,确保即使在AI技术高度发达的未来,也能有效区分人类和AI。PHC并不仅仅是一个简单的数字证书或加密密钥,而是通过离线验证与在线身份保护相结合,确保用户的身份真实性和隐私保护。这种设计使得PHC成为一种可以信赖的身份认证方式,尤其是在信息泛滥、AI技术高速发展的背景下,PHC有望成为未来数字身份认证的标准之一。原创 2024-08-20 00:15:00 · 1417 阅读 · 0 评论 -
【有啥问啥】注意力机制的并行处理和效率优化:环注意力与树注意力
环注意力和树注意力机制分别在局部信息捕捉和层次化建模方面展现了各自的优势。环注意力通过限制计算范围和优化并行计算,提高了处理长序列数据的效率;而树注意力通过层次化建模和分层并行计算,在处理复杂层次化数据时表现优异。根据具体任务的需求,选择最适合的注意力机制可以显著提升模型的性能和计算效率,从而在复杂的数据处理任务中取得更好的效果。原创 2024-08-17 01:30:00 · 1361 阅读 · 0 评论 -
【有啥问啥】曼巴大战变形金刚:号称超越Transformer架构的Mamba架构是什么?
Mamba 是一种新兴的深度学习架构,旨在解决长序列数据的建模问题。它通过将状态空间模型 (State Space Models, SSM) 与选择性机制、并行计算等方法相结合,实现了高效的长序列处理。这篇博客将深入探讨 Mamba 架构的各个组成部分,解释其背后的原理。原创 2024-08-15 03:00:00 · 1597 阅读 · 0 评论 -
【有啥问啥】激活函数:灵活的修正线性单元(FRELU)是什么?
FReLU是一种旨在提升ReLU激活函数灵活性和表达能力的改进型激活函数。与ReLU函数的单一形式不同,FReLU通过引入可调节参数或条件来实现更丰富的非线性特性。分段线性函数:FReLU可能通过不同的线性段来表示不同的输入范围,从而增加函数的复杂性。原创 2024-08-14 01:00:00 · 1171 阅读 · 0 评论 -
【有啥问啥】激活函数:高斯误差线性单元(GELU)是什么?
激活函数在深度学习中至关重要,因为它们为网络引入了非线性,从而使其能够建模数据中的复杂关系。如果没有激活函数,无论网络有多少层,它都将等效于一个线性模型。激活函数的选择会显著影响神经网络的性能,包括训练速度、收敛性和泛化能力。ReLU 是深度学习中最简单且最流行的激活函数之一。ReLUxmax0xReLUxmax0x这意味着对于任何输入xxx,如果x0x > 0x0,ReLU 输出xxx;如果x≤0x \leq 0x≤0,则输出 0。原创 2024-08-14 00:15:00 · 1257 阅读 · 0 评论 -
【有啥问啥】开集目标检测(Open-Set Object Detection)算法是什么?
开集目标检测(Open-Set Object Detection)是一种提升目标检测系统能力的先进技术,它不仅能够识别训练集中出现的目标类别,还能够处理那些训练集中未曾见过的未知目标类别。为了全面理解这一领域,我们将从基本概念、挑战、关键技术和应用等方面进行详细阐述。原创 2024-08-13 06:00:00 · 2528 阅读 · 1 评论 -
【有啥问啥】大模型应用中“function_call”技术浅谈
function_call” 技术在大模型应用中通过动态调用外部资源和服务,显著提升了模型的功能性。通过实时数据获取、动态计算和个性化服务等应用场景,模型能够在实际任务中展现出更高的智能和实用性。然而,这种技术也面临着安全性、稳定性和性能等挑战,需要通过合适的解决方案来确保其有效性和可靠性。随着技术的发展和应用的深入,“function_call” 将在未来的大模型应用中发挥越来越重要的作用。原创 2024-08-13 00:15:00 · 1114 阅读 · 0 评论 -
【有啥问啥】通道与空间的双重增强的CBAM注意力机制是什么?
通道注意力模块(Channel Attention Module)和空间注意力模块(Spatial Attention Module)。这两个模块分别在通道维度和空间维度上对特征进行增强。通道注意力模块:主要关注特征图中哪些通道(即特征的类别)对最终结果更重要,从而对这些通道赋予更高的权重。空间注意力模块:主要关注特征图中哪些空间位置包含更为关键的信息,从而对这些位置赋予更高的权重。通过这两个模块的逐步处理,CBAM能够细化特征的表达,提高模型的预测能力。原创 2024-08-10 14:00:00 · 2827 阅读 · 0 评论 -
【有啥问啥】大模型应用中的幻觉问题是什么?
幻觉问题(hallucination problem)指的是大语言模型在生成文本时,产生了与事实不符或虚构的内容。这些内容可能在语法和结构上是正确的,但在事实层面上却是错误的。例如,一个模型可能会生成关于一本不存在的书籍的详细描述,尽管该书籍实际上并不存在。这种情况尤其在对话生成、文本摘要、信息提取等任务中显得尤为显著。大语言模型训练过程中使用了海量的文本数据,这些数据中包含了大量的真实、虚假和模糊的信息。模型通过学习这些数据中的语言模式来生成文本,但并不会对生成内容的真实性进行直接验证。原创 2024-08-10 00:15:00 · 1685 阅读 · 0 评论 -
【有啥问啥】什么是Deformable Attention(可变形注意力机制)?
稀疏注意力机制的主要思想是通过减少需要计算注意力的键点数量来降低计算复杂度。与全局注意力机制不同,稀疏注意力机制只关注输入特征中的一部分关键位置,而不是全部位置。这种选择性注意力可以显著降低计算量,并且在实际应用中能够提高计算效率。固定稀疏注意力:在这种方法中,模型预先定义一个固定的稀疏模式。例如,可以选择在每个特征点上只计算其与周围特征点的注意力,而忽略远离的特征点。这种方法简单但不够灵活,因为稀疏模式在整个训练过程中是固定的。动态稀疏注意力。原创 2024-08-09 08:56:45 · 2191 阅读 · 1 评论
分享