机器学习算法
文章平均质量分 95
有啥问啥
一个人的成熟,从3次放下开始:①放下过去的遗憾;②放下心中的攀比;③放下无谓的担忧。
个人Github主页:https://wocantudou.github.io/
展开
-
【有啥问啥】SmoothQuant:大模型量化的高效利器
SmoothQuant由麻省理工学院(MIT)的Han Lab提出,是一种针对大模型的训练后量化方法。其核心理念在于平衡激活值和权重的量化难度,通过逐通道缩放平滑激活值分布,减少离群点的影响,从而实现高精度的模型压缩与加速。SmoothQuant的出现,为大型语言模型的量化提供了一种新的解决方案,有助于推动AI技术的广泛应用。SmoothQuant作为一种创新的训练后量化方法,通过平滑因子和逐通道缩放技术,巧妙地解决了大模型中激活值的量化难题。原创 2024-11-12 00:15:00 · 626 阅读 · 0 评论 -
【有啥问啥】OneEuro滤波:高效平滑噪声信号的利器
OneEuro滤波器是一种自适应低通滤波器,最早由Géry Casiez等人在2012年提出,专为动态、噪声数据的实时平滑设计。它能够灵活调整平滑度,以应对各种变化速度的信号。这种滤波器在低速变化时可有效去除抖动,而在信号快速变化时可减少延迟,广泛应用于VR(虚拟现实)、AR(增强现实)、交互系统和运动捕捉等领域。OneEuro滤波器的核心优势在于其自适应能力。与传统低通滤波器相比,它根据信号的变化速度动态调整滤波参数,在保持信号响应性的同时,最大限度地减少噪声和抖动。原创 2024-11-12 01:15:00 · 800 阅读 · 0 评论 -
【有啥问啥】Alpha Matting:精准图像分割的艺术
Alpha Matting作为一种精准的图像分割技术,在图像处理领域发挥着重要作用。通过估计每个像素的透明度值,它实现了前景和背景之间的平滑过渡,为图像合成、背景替换、图像修复和游戏开发等领域提供了强大的支持。随着计算机视觉技术的不断发展,Alpha Matting技术将会得到更广泛的应用和发展。未来,我们可以期待更加高效、准确的Alpha Matting算法的出现,以及更多应用场景的拓展和创新。不断改进的深度学习技术和优化算法,将为Alpha Matting带来新的突破,推动图像处理领域的前进。原创 2024-10-28 01:15:00 · 1787 阅读 · 0 评论 -
【有啥问啥】图割(Graph Cut)算法:图像分割的利器
图割算法是一种强大的图像分割工具,在计算机视觉领域有着广泛的应用。尽管存在一些缺点,但随着计算机硬件性能的不断提升和算法的优化,图割算法仍然是图像分割研究的热点。通过结合其他特征和先验知识,以及引入改进和优化方法,图割算法在未来将继续发挥重要作用。原创 2024-10-28 00:15:00 · 1159 阅读 · 0 评论 -
【有啥问啥】视频插帧算法技术原理详解
视频插帧(Video Interpolation)技术,作为计算机视觉领域的一项重要应用,旨在通过算法手段在已有的视频帧之间插入额外的帧,从而提升视频的帧率,使其看起来更加流畅。这一技术不仅广泛应用于电影特效、视频游戏、运动捕捉等领域,还随着计算机视觉和深度学习技术的飞速发展,不断取得新的突破。本文将全面而深入地介绍插帧算法的技术原理,涵盖其发展历程、核心原理、常用方法、实现细节以及应用领域,以期为相关领域的从业人员和研究人员提供有价值的参考。原创 2024-10-25 00:15:00 · 1355 阅读 · 0 评论 -
【有啥问啥】智能座舱中的DDAW认证是什么?
DDAW认证是对车辆配备的DDAW系统进行的一种法规认证,旨在确保DDAW系统符合相关法规要求,能够有效监控驾驶员的困倦程度,并在驾驶员因困倦而无法安全驾驶时发出警告。欧盟的DDAW法规于2021年8月正式颁布生效,并于2022年7月起对所有新车型强制实施,2024年7月起对所有新车强制实施。这一法规的出台不仅推动了DDAW系统在车辆中的普及,也提高了车辆的安全性能。同时,该法规还规定了DDAW系统的测试方法和评估标准,以确保系统的准确性和可靠性。原创 2024-10-24 08:59:56 · 1196 阅读 · 0 评论 -
【有啥问啥】CLIP Adapter:提升视觉语言模型性能的利器
CLIP Adapter作为一种轻量级且高效的模型扩展方法,为CLIP模型的应用提供了更多的可能性。通过引入适配层,CLIP Adapter能够在保持CLIP模型强大表征能力的同时,更好地适应下游任务,从而提升模型的性能。未来,随着研究的深入和技术的不断发展,CLIP Adapter有望在更多领域和任务中展现出其独特的优势和价值。我们期待看到更多关于CLIP Adapter的创新研究和应用实践,为视觉语言模型的发展注入新的活力。原创 2024-10-23 10:41:00 · 1188 阅读 · 0 评论 -
【有啥问啥】ADAS:让驾驶更智能、更安全的科技
ADAS作为一项先进的汽车技术,正在深刻改变我们的驾驶方式。通过集成多种传感器、摄像头、雷达等设备,ADAS系统能够实现对车辆周围环境的实时感知和决策,提高行车安全、减轻驾驶疲劳、提升驾驶舒适性。随着技术的不断进步与成本降低,ADAS系统将逐渐普及到更多车型和场景中,为我们带来更加安全、便捷、舒适的驾驶体验。未来,ADAS系统将继续朝着智能化、集成化的方向发展,为智能交通与自动驾驶的实现奠定坚实的基础,塑造更美好的出行未来。原创 2024-10-18 11:13:48 · 1071 阅读 · 0 评论 -
【有啥问啥】SlowFast网络:计算机视觉中的视频理解新范式
SlowFast网络是一种创新的双模态卷积神经网络(CNN),它利用两个并行的CNN流——慢速流(Slow)和快速流(Fast)——来分别处理视频中的静态和动态信息。慢速流专注于捕捉全局空间信息,如场景布局和物体结构;而快速流则专注于捕捉短期运动信息,如物体的运动轨迹和速度变化。原创 2024-10-18 10:54:34 · 1445 阅读 · 2 评论 -
【有啥问啥】亚像素卷积(Sub-pixel Convolution):深入浅出图像超分辨率技术
亚像素卷积作为一种高效的超分辨率方法,凭借其简单、快速和效果优异的特点,在图像处理领域有着广泛的应用前景。通过对其原理、实现细节、实验对比的详细解析,本文希望为读者提供一个清晰的理解路径,帮助大家更好地应用这一技术。原创 2024-10-15 16:13:07 · 1016 阅读 · 0 评论 -
【有啥问啥】 群体智能(Swarm Intelligence):从自然到人工智能的深度探索
群体智能作为一种新兴的研究领域,为我们提供了一种全新的视角来理解复杂系统的行为和机制。通过对自然界中群体行为的研究和模拟,我们可以开发出更智能、更有效的算法和系统,解决传统方法难以解决的问题。随着相关技术的不断发展和完善,群体智能将在未来发挥更加重要的作用,推动科技进步和社会发展。此外,随着物联网、大数据、云计算等技术的快速发展,群体智能算法将与这些技术紧密结合,共同推动人工智能领域的创新和发展。例如,通过物联网技术实现智能设备的互联和数据的实时采集,为群体智能算法提供丰富的数据源;原创 2024-10-09 13:46:55 · 1794 阅读 · 0 评论 -
【有啥问啥】SE(Squeeze-and-Excitation)架构详解
在深度学习,特别是计算机视觉领域,卷积神经网络(CNN)的发展日新月异。为了进一步提升CNN的特征提取能力和模型性能,研究者们不断探索新的网络架构和组件。其中,Squeeze-and-Excitation(SE)架构作为一种创新的特征重标定机制,自提出以来便受到了广泛的关注和应用。本文将详细解析SE架构的工作原理、实现方式、优势及其在不同网络架构中的应用。原创 2024-10-08 10:39:11 · 1179 阅读 · 0 评论 -
【有啥问啥】SE(Squeeze-and-Excitation)架构详解
在深度学习,特别是计算机视觉领域,卷积神经网络(CNN)的发展日新月异。为了进一步提升CNN的特征提取能力和模型性能,研究者们不断探索新的网络架构和组件。其中,Squeeze-and-Excitation(SE)架构作为一种创新的特征重标定机制,自提出以来便受到了广泛的关注和应用。本文将详细解析SE架构的工作原理、实现方式、优势及其在不同网络架构中的应用。原创 2024-10-05 01:15:00 · 1050 阅读 · 0 评论 -
【有啥问啥】领域自适应(Domain Adaptation, DA)详解
领域自适应是一种技术框架,旨在解决源领域和目标领域之间数据分布不一致的问题,同时假设这两个领域共享相同的特征空间和标签空间。其核心在于通过一系列技术手段,使模型能够学习到一种跨领域的通用表示,从而有效地将在源领域学到的知识迁移到目标领域。原创 2024-10-05 00:15:00 · 1159 阅读 · 0 评论 -
【有啥问啥】表示学习(Representation Learning)详解:理论、方法与应用
表示学习作为机器学习和深度学习的重要分支,已经在多个领域展现出卓越的应用潜力。随着无监督学习、自监督学习、多模态学习等技术的快速发展,表示学习的研究和应用前景将更加广阔。然而,表示学习仍面临诸如可解释性、鲁棒性和多模态表示等方面的挑战,未来的研究将重点解决这些问题,以推动这一领域的进一步发展。未来,我们可以期待更多的应用场景,例如在自动驾驶、智能医疗、虚拟现实等领域,表示学习将发挥越来越重要的作用。原创 2024-10-04 01:15:00 · 1290 阅读 · 0 评论 -
【有啥问啥】联邦学习(Federated Learning, FL):保护隐私的分布式机器学习
联邦学习是一种创新的机器学习范式,它允许多个边缘设备(如智能手机、IoT设备)或数据中心在保持数据本地化的同时,协同训练一个共享的全局模型。这一过程中,数据无需离开其原始位置,仅通过交换模型更新(如梯度信息)来优化全局模型,从而在保护用户隐私的同时,实现模型性能的提升。原创 2024-10-04 00:15:00 · 1169 阅读 · 0 评论 -
【有啥问啥】机器学习中的终身学习(Lifelong Learning):持续进化的智能
终身学习是一种机器学习范式,它强调模型能够在连续的任务序列上进行学习,并且保留并利用之前学到的知识来解决新问题。这种学习方式模拟了人类的学习机制——通过不断地积累经验和知识,逐步提高自身的认知能力和适应性。终身学习代表了构建更加灵活、智能化机器学习模型的一种全新途径。虽然目前仍面临许多挑战,但随着技术进步和深入研究,我们可以预见未来将会有更多创新性的终身学习方法诞生,并应用于更广泛的领域。这不仅有助于推动人工智能技术的发展,也将极大地改善我们的日常生活体验。原创 2024-10-03 01:15:00 · 1920 阅读 · 1 评论 -
【有啥问啥】规划与控制算法详解:从原理到应用及未来展望
规划算法是智能体在给定环境或任务空间中,根据起始状态、目标状态及一系列约束条件,计算出一系列可行的动作或路径的算法。根据应用场景的不同,规划算法主要分为路径规划算法和轨迹规划算法。路径规划算法:关注从起始点到目标点的路径最优性或可行性,不考虑动态因素。常见算法包括Dijkstra算法、A*算法、RRT(快速随机树)及其改进版本RRT*等。轨迹规划算法:在路径规划的基础上,进一步考虑时间、速度、加速度等动态约束,生成平滑且符合动力学特性的轨迹。原创 2024-10-03 00:15:00 · 1237 阅读 · 0 评论 -
【有啥问啥】卡尔曼滤波(Kalman Filter):从噪声中提取信号的利器
卡尔曼滤波是一种强大的数学工具,它通过结合系统的预测和观测数据,实现了对动态系统状态的精确估计。其高效性和鲁棒性使得它在众多领域得到了广泛应用。随着技术的不断发展,卡尔曼滤波及其扩展形式(如无迹卡尔曼滤波、粒子滤波等)将继续在各个领域发挥重要作用。原创 2024-10-01 01:15:00 · 978 阅读 · 0 评论 -
【有啥问啥】二分图(Bipartite Graph)算法原理详解
设GVEG=(V,E)GVE是一个无向图,如果顶点集VVV可以分割为两个互不相交的子集AAA和BBB,且图中的每条边ij(i,j)ij所关联的两个顶点iii和jjj分别属于这两个不同的顶点集(即i∈Aj∈Bi∈Aj∈B),则称图GGG为一个二分图。二分图算法是图论中的一项重要技术,其应用范围广泛。本文详细解析了二分图的基本概念、性质、判定方法,以及求解最大匹配的匈牙利算法。通过理解和应用这些算法,我们可以有效地解决许多实际问题。原创 2024-10-01 00:15:00 · 1370 阅读 · 0 评论 -
【有啥问啥】多目标跟踪SORT算法原理详解
SORT算法是一种基于检测跟踪(tracking-by-detection)框架的在线多目标跟踪算法。它依赖于目标检测算法提供的边界框信息,通过关联连续帧中的目标来构建和更新目标的轨迹。SORT算法的核心思想可以概括为三个步骤:检测、关联和更新。SORT算法作为一种经典的在线多目标跟踪算法,以其简单高效和实时性强的特点在多个领域得到了广泛应用。然而,它也存在一些不足之处,如对复杂场景的鲁棒性较差、容易产生ID切换问题等。原创 2024-09-30 01:15:00 · 1067 阅读 · 0 评论 -
【有啥问啥】In-Context Learning(上下文学习):深入解析与应用实践
In-Context Learning(上下文学习)的核心在于模型能够利用预训练阶段学到的通用知识和上下文理解能力,通过少量示例快速适应新任务。这一过程无需对模型进行额外的训练或微调,极大地提高了模型的应用效率和灵活性。它依赖于输入的上下文信息,通过分析这些信息来生成输出,从而实现任务的高效执行。原创 2024-09-30 00:15:00 · 1041 阅读 · 0 评论 -
【有啥问啥】具身智能(Embodied AI):人工智能的新前沿
具身智能作为人工智能的一个重要分支,具有广阔的应用前景和深远的社会影响。通过不断的研究和探索,具身智能将在未来为人类社会带来更多的便利和福祉。同时,我们也需要关注其可能带来的挑战和问题,并积极寻求解决方案以确保其健康发展。原创 2024-09-29 01:15:00 · 2111 阅读 · 0 评论 -
【有啥问啥】大型语言模型的涌现能力(Emergent Abilities):新一代AI的曙光
涌现能力是LLM发展过程中一个令人兴奋的现象,它标志着人工智能向通用人工智能迈出了重要的一步。尽管仍面临诸多挑战,但涌现能力的潜力是无限的。通过持续的研究和探索,我们有理由相信,LLM将在未来为人类社会带来更多的福祉。随着技术的进步,涌现能力不仅将改变我们的工作和生活方式,也将引领人类向更深层次的智能探索迈进。原创 2024-09-27 01:15:00 · 1369 阅读 · 0 评论 -
【有啥问啥】深度理解主动学习:机器学习的高效策略
主动学习是一种半监督学习方法,其核心思想是允许机器学习算法在训练过程中自主决定哪些数据点需要被标注。与传统被动学习(即基于一个已完全标注的数据集进行训练)不同,主动学习在初始阶段通常只有一小部分数据被标注,随后通过迭代过程逐步挑选出对模型性能提升最为关键的数据点进行标注。原创 2024-09-27 00:15:00 · 1183 阅读 · 0 评论 -
【有啥问啥】深度解析迁移学习(Transfer Learning)
域(Domain):包含数据特征和特征分布,是学习的主体。一个域D由特征空间XXX和边缘分布PXP(X)PX组成,即DXPXDXPX。任务(Task):包含标签空间和预测函数,是学习的目标。任务T由标签空间Y和预测函数f组成,即TYfT = {Y, f}TYf。源域(Source Domain)与目标域(Target Domain):分别对应已有知识的域和新任务所在的领域。迁移学习作为一种强大的机器学习技术,为解决数据稀缺、标注成本高等问题提供了有效解决方案。原创 2024-09-26 01:15:00 · 1286 阅读 · 0 评论 -
【有啥问啥】“弱激励学习(Weak Incentive Learning)”的原理与过程解析
弱激励学习(Weak Incentive Learning)是指在一种激励机制相对较弱或隐晦的环境下,学习主体通过自主探索、试错与反馈调整,逐步发展出解决问题能力和适应性的一种学习模式。与强化学习中的明确奖励机制不同,弱激励学习中的激励往往更加含蓄,可能源自内部动机(如好奇心、成就感)或外部环境的微弱反馈。原创 2024-09-26 00:15:00 · 1657 阅读 · 0 评论 -
【有啥问啥】 Self-Play技术:强化学习中的自我进化之道
Self-Play,即自我博弈或自我对弈技术,是一种无需外部监督或干预,通过智能体与自己或历史版本的自己进行对抗性训练,从而不断优化自身策略的方法。该技术最初在游戏领域大放异彩,如AlphaGo通过Self-Play技术成功击败人类围棋顶尖高手,随后迅速扩展到其他复杂决策领域。原创 2024-09-25 01:15:00 · 1663 阅读 · 0 评论 -
【有啥问啥】Stackelberg博弈方法:概念、原理及其在AI中的应用
Stackelberg博弈方法在AI中有广泛的应用前景,特别是在多智能体决策、资源分配、安全防御和经济机制设计等领域。其领导者-追随者的结构为解决不对称信息下的优化问题提供了理论基础。在与强化学习、深度学习等AI技术结合后,Stackelberg博弈为复杂动态环境中的智能决策提供了新的思路。通过利用这种博弈论模型,AI系统能够更好地适应现实世界中不对称决策场景,预测和应对其他参与者的策略变化,并最终实现收益最大化或资源最优分配。原创 2024-09-24 01:15:00 · 1950 阅读 · 1 评论 -
【有啥问啥】多臂老虎机(Multi-Armed Bandit,MAB)算法详解
假设我们面对KKK台老虎机,每台老虎机的奖励分布都是未知的。目标是通过多个回合的选择,最大化累计奖励。KKK台老虎机,各自的奖励分布为r1r2rKr1r2rK。这些分布可以是二项分布、正态分布或其他。每轮玩家可以选择一台老虎机进行尝试,获得奖励rir_iri,其中rir_iri来自老虎机iii的奖励分布。目标是找到最优策略π\piπ,在有限的尝试次数内最大化累计奖励。原创 2024-09-24 00:15:00 · 1431 阅读 · 0 评论 -
【有啥问啥】深入解析:机器学习中的过拟合与欠拟合
欠拟合是指模型过于简单,无法从数据中学习到足够的特征,导致训练数据和测试数据的误差都较高。这通常是因为模型的复杂度不足,无法捕捉到数据中的模式和关系。原创 2024-09-20 01:15:00 · 2615 阅读 · 0 评论 -
【有啥问啥】深入理解贝叶斯推理:从先验概率到后验概率
在数据科学、统计学和人工智能领域中,处理不确定性是一个核心问题。贝叶斯推理为我们提供了一个优雅的数学框架,通过结合已有的先验知识和新获取的数据,动态更新对事件发生的概率估计。贝叶斯推理不仅是统计学中的重要工具,在实际应用场景中,如医疗诊断、金融风险管理、自然语言处理(NLP)和机器学习等领域,它展现出极大的价值。本文将详细介绍贝叶斯推理的核心思想,解释先验概率和后验概率的关系,并结合贝叶斯公式推导过程、代码示例及实际应用场景,探讨贝叶斯推理的优势、挑战和应用前景。原创 2024-09-20 00:15:00 · 2448 阅读 · 2 评论 -
【有啥问啥】弱监督学习新突破:格灵深瞳多标签聚类辨别(Multi-Label Clustering and Discrimination, MLCD)方法
格灵深瞳提出的MLCD方法,为弱监督学习提供了全新的解决方案。通过结合聚类技术和多标签分类,MLCD有效利用了海量无标签数据,增强了视觉模型的语义理解能力。这一方法在多个视觉任务上展现了出色的性能,具有广阔的应用前景。原创 2024-09-18 01:15:00 · 1193 阅读 · 0 评论 -
【有啥问啥】对比学习(Contrastive Learning,CL)的原理与前沿应用详解
对比学习(Contrastive Learning)是自监督学习领域的关键方法之一,近年来因其在图像、文本和跨模态任务上的优越表现,受到了学术界和工业界的广泛关注。它的核心目标是通过对比相似和不相似样本,使模型学习到更加鲁棒的特征表示。这篇文章将深入探讨对比学习的基本原理、关键技术细节、应用场景及未来发展方向。原创 2024-09-17 01:15:00 · 1047 阅读 · 0 评论 -
【有啥问啥】深入浅出马尔可夫链蒙特卡罗(Markov Chain Monte Carlo, MCMC)算法
Markov Chain Monte Carlo(MCMC)为我们提供了一种强大的工具,用于从复杂分布中进行采样,特别是在贝叶斯推断和概率模型中具有广泛的应用。尽管 MCMC 存在一定的收敛性和效率挑战,但随着算法的优化和硬件性能的提升,其在机器学习、统计学等领域的应用前景依旧广阔。诸如 Hamiltonian Monte Carlo(HMC)等高级变种,以及结合深度学习的方法(如变分推断与 MCMC 的混合使用),可能会进一步提升 MCMC 在大规模数据中的表现,使其在更广泛的领域中发挥作用。原创 2024-09-16 01:15:00 · 2260 阅读 · 0 评论 -
【有啥问啥】复习变分下界即证据下界(Evidence Lower Bound, ELBO):原理与应用
变分下界是变分推断的核心工具,它通过最大化下界来找到近似的后验分布,使得复杂的推断问题变得可解。尽管变分下界在一些场景中存在局限性,但它仍然是生成模型、贝叶斯方法和无监督学习中的重要组成部分。随着算法的改进,变分推断及其下界的应用将会更加广泛。原创 2024-09-14 01:15:00 · 1333 阅读 · 0 评论 -
【有啥问啥】计算机视觉领域中的光流(Optical Flow)是什么?
光流(Optical Flow)是计算机视觉领域中的一个核心概念,用于描述在连续图像帧中物体的运动。具体来说,光流是指图像中像素的运动矢量场,它描述了每个像素点在两帧图像之间的位移。这一概念对于诸如目标跟踪、运动估计、视频稳定、增强现实等任务至关重要。vxyuv其中,u和v分别表示像素在x和y方向的速度。在计算光流时,目标是根据时间上相邻的图像帧,估计每个像素点的运动方向和速度。原创 2024-09-12 01:15:00 · 1329 阅读 · 0 评论 -
【有啥问啥】探索扫地机器人中的 SLAM 算法:原理、实现与未来展望
SLAM 是解决机器人在未知环境中边构建地图边确定自己位置的核心问题。定位(Localization):通过传感器,机器人在未知地图中确定自己当前的具体位置。建图(Mapping):实时绘制并更新周围环境的地图。对扫地机器人来说,SLAM 是实现高效清扫的关键,因为机器人需要知道哪些区域已经清扫,哪些区域仍待处理。SLAM 技术的成熟推动了扫地机器人等智能设备的广泛应用。在未来,随着算法和硬件的进步,SLAM 将进一步提升扫地机器人的自主性与智能化水平,推动智能家居的进一步发展。原创 2024-09-11 00:15:00 · 2016 阅读 · 0 评论 -
【有啥问啥】什么是扩散模型(Diffusion Models)?
扩散模型是一种概率生成模型,其生成过程可以被视为一个逐渐消除噪声的过程。具体来说,扩散模型通过模拟一个反向的马尔可夫链来逐步将噪声还原为目标数据。这个反向过程的基础是一个正向的扩散过程,在该过程中,数据逐渐被添加噪声,最终接近一个简单的分布(如标准高斯分布)。扩散模型的训练目标是学习这个反向过程,使得模型能够从纯噪声生成出逼真的样本。传送门链接:多维高斯分布(Multivariate Gaussian Distribution,MGD)的采样过程是什么样的?原创 2024-09-07 01:15:00 · 2307 阅读 · 0 评论 -
【有啥问啥】大模型应用中的哈希链推理任务
哈希链推理任务是在哈希链基础上进行逻辑推理和验证的任务,旨在确保数据处理和模型推理过程的可信性。验证推理过程的完整性:通过构建推理过程中的哈希链,确保每一步推理都没有被篡改。验证数据处理的完整性:在分布式数据处理环境中,使用哈希链验证数据在各处理步骤中的一致性。认证生成内容的可信性:利用哈希链确保生成的内容在传输和处理过程中未被篡改。保护数据隐私和安全:通过哈希链保证在敏感数据处理过程中数据的隐私性和安全性。原创 2024-09-07 00:15:00 · 1109 阅读 · 0 评论
分享