
科普
文章平均质量分 94
有啥问啥
一个人的成熟,从3次放下开始:①放下过去的遗憾;②放下心中的攀比;③放下无谓的担忧。
个人Github主页:https://wocantudou.github.io/
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【有啥问啥】多Token预测(MTP)推理技术研究报告
传统自回归(AR)生成一次仅预测下一个token,每次都要前向计算模型,存在高度的串行开销。多Token预测(MTP)技术旨在一次前向中并行生成多个相邻token,从而复用模型计算并减少时序依赖。原创 2025-06-21 11:30:30 · 1338 阅读 · 0 评论 -
【有啥问啥】视觉-语言-动作 (VLA) 技术概述
VLA 系统通常采用“视觉-语言模型(VLM)+ 动作预测模块” 的架构。视觉-语言模型部分使用预训练的视觉编码器(如ViT、DINOv2、SigLIP等)提取图像帧或视频特征,并使用大型语言模型(如LLaMA/GPT变体)对自然语言指令/描述进行编码。两种模态的特征一般通过机制(如交叉注意力、特征拼接或统一 token 形式)整合为统一表征。随后,动作预测模块以这个多模态上下文为条件,生成对应的动作输出。原创 2025-06-21 11:27:40 · 1381 阅读 · 0 评论 -
【有啥问啥】大模型交互新视角:Function Calling vs. Model Context Protocol (MCP)
大型语言模型(LLMs)的能力日益强大,但要让它们真正融入我们的应用生态并与真实世界有效互动,仅仅依靠文本输入和输出是不够的。我们需要更高级的机制来管理信息流、触发外部动作。和。尽管两者都与 LLM 的交互和能力扩展有关,但它们关注的层面和解决的问题有着本质的区别。原创 2025-05-16 01:15:00 · 1073 阅读 · 0 评论 -
【有啥问啥】解锁大模型新姿势:深度研究模式 (Deep Research Mode) 究竟是什么?
简单来讲,“深度研究模式”并非一个统一的技术标准,也并非某个模型特定的功能按钮(至少目前还不是一个被广泛认可的通用术语)。它更多地代表了一种利用大模型处理复杂、多维度、需要深度挖掘和综合分析的信息任务的能力和范式。任务复杂度: 它不再局限于单个事实的检索或简单问题的回答,而是专注于处理那些需要跨领域知识、深入了解历史背景、对比不同观点的复杂问题。例如,在研究“全球气候变化对不同生态系统的影响”时,需要综合气象学、生态学、地理学等多学科知识,分析历史数据和未来预测模型,对比不同地区生态系统的差异。原创 2025-05-16 00:15:00 · 999 阅读 · 0 评论 -
【有啥问啥】深入浅出理解RMSNorm:简单高效的神经网络归一化技术
RMSNorm 是对 LayerNorm 的有效简化,通过移除均值中心化步骤并仅使用均方根进行缩放,显著提高了计算效率,同时在许多任务中保持或超越了 LayerNorm 的性能。其简洁性和高效性使其成为现代深度学习(尤其是大型 Transformer 模型)中极具吸引力的归一化选项。原创 2025-04-28 01:15:00 · 844 阅读 · 0 评论 -
【有啥问啥】深入理解 Layer Normalization (LayerNorm):深度学习的稳定基石
特性BatchNormLayerNorm规范化维度跨样本的同一特征单一样本内的所有特征Batch Size 依赖性依赖 Batch Size,小 Batch Size 下性能下降与 Batch Size 无关序列数据处理处理变长序列复杂天然契合序列数据处理训练推理一致性需要维护移动平均统计量,行为不一致训练推理使用相同逻辑,行为一致。原创 2025-04-28 00:15:00 · 1245 阅读 · 0 评论 -
【有啥问啥】 深入探索低比特量化:FP4 训练与推理技术的现状及展望
特性FP32 (基准)FP16/BF16INT8INT4FP4 (概念性)比特数32168844类型浮点浮点整数浮点整数浮点压缩比 (相对FP32)1x2x4x4x8x8x动态范围非常大较大/中等有限 (需缩放)中等/较大非常有限极其有限精度高中等有限有限非常低极低硬件支持广泛广泛广泛 (推理)新兴 (Hopper+)稀少几乎没有主要应用通用训练/推理推理训练/推理推理 (探索)原创 2025-04-21 01:15:00 · 2145 阅读 · 0 评论 -
【有啥问啥】mem0: 为你的 AI 应用打造持久化、可搜索的记忆
mem0 是一个开源 Python 库,旨在为基于 LLM 的应用程序(如聊天机器人、AI 代理、个人助理等)提供持久化、可搜索的记忆能力。你可以把它想象成 AI 的外部“海马体”,负责存储、管理和检索过去的交互信息,从而让 AI 能够进行更连贯、更个性化、更有上下文感知的对话和操作。它的核心目标是:让开发者能够轻松地为他们的 AI 应用集成长期记忆功能,而无需深入研究复杂的向量数据库或记忆管理策略的底层细节(尽管它也允许高级定制)。简洁的 API,易于集成。将记忆管理与核心应用逻辑分离。原创 2025-04-14 01:15:00 · 1916 阅读 · 0 评论 -
【有啥问啥】投机解码(Speculative Decoding)是什么?
近年来,大语言模型(LLM)以其惊人的能力改变了自然语言处理的格局。然而,这些强大的模型也带来了巨大的计算挑战,尤其是在推理(Inference)阶段。模型的规模越大,生成文本所需的时间就越长,这限制了它们在实时交互、大规模部署等场景下的应用。为了解决这个瓶颈,研究人员提出了各种优化技术,其中,“投机解码”(Speculative Decoding)是一种极具潜力且备受关注的方法。本文将深入浅出地介绍投机解码的原理、优势、挑战以及它为何能显著加速 LLM 推理过程。原创 2025-04-14 00:15:00 · 1458 阅读 · 0 评论 -
【有啥问啥】深度学习中的 Free Running 模式:原理、挑战与优化策略
Free running 模式也常称为自动回归生成模式。其核心思想是:在生成序列时,模型不再使用真实历史数据,而是将上一步的预测结果作为下一步的输入。初始令牌(例如 “[START]”)作为输入,模型预测出第一个词将预测出的第一个词作为输入,生成第二个词如此反复,直到生成结束符“[END]”或达到预定长度这种模式直接模拟模型在实际应用中的工作方式,因此更接近真实场景。但同时,由于依赖自身预测作为输入,如果模型在初始阶段出现错误,可能导致错误信息逐步累积,最终导致输出质量下降。原创 2025-04-09 01:15:00 · 1042 阅读 · 0 评论 -
【有啥问啥】深入浅出讲解 Teacher Forcing 技术
Teacher Forcing 是一种训练策略,其基本思想是在训练阶段,不使用模型上一时刻的预测结果作为当前时刻的输入,而是直接将真实的目标(ground truth)数据提供给模型。换句话说,在训练解码器(decoder)时,模型的每一步输入都由教师(即训练数据中的正确答案)提供,而不是依赖于模型自身已经生成的输出。例如,在典型的 Seq2Seq 模型中,如果输入句子为模型在时间步ttt的输入不再使用模型预测的yt−1yt−1,而是直接使用真实的yt−1。原创 2025-04-09 00:15:00 · 1435 阅读 · 0 评论 -
【有啥问啥】深入浅出:高性能大模型应用工具 vLLM 技术详解
vLLM,顾名思义,即“虚拟大型语言模型”,但实际上它并非一个全新的模型,而是一个为 LLM 推理和 Serving 优化的开源库。高性能推理引擎: vLLM 的核心目标是提供最先进的推理吞吐量。它通过多种优化技术,例如 PagedAttention,显著提升了 LLM 的推理速度和效率。高效内存管理: vLLM 采用了创新的机制,能够更有效地管理 attention key 和 value 的内存,降低内存占用,从而支持更大规模的模型和更长的上下文长度。易于使用: vLLM。原创 2025-03-07 01:15:00 · 1303 阅读 · 0 评论 -
【有啥问啥】深入浅出:大模型应用工具 Ollama 技术详解
Ollama 是一款轻量级、可扩展的开源工具,其核心目标是让用户能够在本地轻松地运行和管理大型语言模型。它提供了一个简洁的命令行界面(CLI)和友好的 API,极大地降低了使用大模型的门槛。Ollama 提供了一个统一的平台来下载、管理和运行各种大模型。用户无需手动配置复杂的环境,即可快速体验不同模型的特性。Ollama 强调模型的本地运行,这意味着模型推理过程完全在用户的设备上进行,无需依赖云端服务。这对于数据隐私、离线应用以及降低延迟至关重要。原创 2025-03-07 00:15:00 · 1225 阅读 · 0 评论 -
【有啥问啥】DeepSeek开源DeepGEMM:释放FP8矩阵乘法加速的潜力
Cα∗opAopBβ∗CCα∗opAopBβ∗CAAA和BBB是输入矩阵。CCC是输出矩阵。ααα和βββ是标量系数。opop()op代表可选的矩阵操作,例如转置或共轭转置。表示矩阵乘法。GEMM 广泛应用于各种计算密集型应用,尤其是在深度学习领域,它构成了卷积神经网络(CNN)、循环神经网络(RNN)、Transformer 模型等的核心计算层。因此,GEMM 的效率直接影响着 AI 模型的训练和推理速度。原创 2025-02-28 01:45:00 · 1205 阅读 · 0 评论 -
【有啥问啥】深入了解 FlashMLA:Hopper GPU 的高效 MLA 解码内核
为了理解 FlashMLA 的优势,我们首先需要了解MLA 解码内核的概念。在深度学习模型,尤其是 Transformer 模型中,注意力机制 (Attention Mechanism)是核心组件之一。多层注意力 (MLA)机制是注意力机制的扩展,它允许模型在多个层级上进行信息交互和特征提取,从而更好地捕捉输入数据中的复杂关系。解码内核则指的是模型推理 (Inference) 阶段,特别是解码 (Decoding)阶段的核心计算模块。原创 2025-02-28 01:15:00 · 1043 阅读 · 0 评论 -
【有啥问啥】DeepSeek开源的DeepEP(Deep Expert Parallelism):MoE模型的通信加速利器
DeepEP是由DeepSeek开源的高性能通信库,专为MoE模型的训练和推理设计。MoE模型通过多个专家网络的协作来提高模型的性能和灵活性,但这也带来了通信和计算的挑战。DeepEP通过优化GPU间的数据传输和计算流程,显著提升了MoE模型的训练和推理效率。原创 2025-02-27 01:00:00 · 1211 阅读 · 0 评论 -
【有啥问啥】Hook机制:DeepEP中实现计算与通信的高效重叠
DeepEP 通过巧妙地运用 Hook 机制,成功地实现了计算与通信的高效重叠,为解决传统同步通信模式下的资源浪费和延迟问题提供了一个优秀的解决方案。它的优势在于高效的资源利用率、低延迟、透明性、易用性以及良好的灵活性。随着计算机技术的不断发展,对于计算与通信效率的要求也越来越高,DeepEP 的这种 Hook 机制有望在未来得到更广泛的应用和发展,为构建更高效、更智能的计算机系统做出贡献。原创 2025-02-27 00:15:00 · 2322 阅读 · 0 评论 -
【有啥问啥】NVLink 与 RDMA:高性能计算的左右护法
NVLink 和 RDMA 是现代高性能计算和数据中心不可或缺的关键技术。理解它们的特性和应用场景,有助于我们根据实际需求选择合适的通信协议,构建高效、强大的计算系统。随着计算需求的不断增长,相信这两种技术都将持续发展,并在未来的计算领域发挥更加重要的作用。原创 2025-02-26 21:15:00 · 1378 阅读 · 0 评论 -
【有啥问啥】All-to-All 通信:原理、实现与应用
All-to-All 通信是一种多对多的通信模式,其中每个参与进程都向所有其他进程发送不同的数据,同时接收来自所有其他进程的数据。这种通信模式允许每个进程与其他所有进程进行数据交换,从而实现全局数据的共享和分发。All-to-All 通信作为一种高效的多对多通信模式,在分布式计算和并行处理领域具有重要的应用价值。通过 Ring 算法和 Pairwise 算法的实现,All-to-All 通信可以有效地提高数据分发和收集的效率,为高性能计算和分布式系统提供了强大的支持。原创 2025-02-26 21:00:00 · 2657 阅读 · 0 评论 -
【有啥问啥】大模型中的“快思考”与“慢思考”:理解AI的两种思维模式
快思考”和“慢思考”的概念源于心理学家丹尼尔·卡尼曼在他的著作《思考,快与慢》中提出的双系统理论。系统1:快思考 (Fast Thinking)特点:快速、自动、无意识、直觉性强、耗能少。运作方式:依赖于经验、习惯和启发式方法,不需要刻意控制。例子:识别熟悉的面孔、阅读简单的句子、躲避突然出现的障碍物等。系统2:慢思考 (Slow Thinking)特点:缓慢、费力、有意识、逻辑性强、耗能多。运作方式:需要集中注意力、进行逻辑推理和分析,需要刻意控制。例子。原创 2025-02-17 01:15:00 · 1995 阅读 · 0 评论 -
【有啥问啥】揭秘AI图像/视频生成的幕后功臣:重述(Recaptioning)技术
想象一下,你正在教一个小孩子认图识字。你给他看一张猫咪的照片,卡片上写着“猫”。这是最基础的描述,但对孩子来说,仅仅知道这是“猫”是不够的。他可能会问:猫是什么颜色的?在哪里?周围有什么?重述技术就像是给AI上了一个“高级补习班”,它不仅仅满足于简单的描述,还使用更加丰富和细致的语言,帮助AI从多个维度理解图像或视频的内容。这一过程就像是把图像背后的信息逐层展开,向AI呈现出更加复杂、真实的世界。例如,对于一张“猫坐在垫子上”的图片,传统的描述可能只有“猫在垫子上”。原创 2024-12-16 01:15:00 · 1114 阅读 · 0 评论 -
【有啥问啥】AIPC? - 什么是RPA技术?
简单来说,机器人流程自动化 (RPA) 就是用“软件机器人”来代替人操作电脑。这些“机器人”并不是真的机器人,而是一些程序或脚本,它们可以模拟人类在电脑上的各种操作,比如点击鼠标、键盘输入、复制粘贴等等。它们按照预先设定的规则一步一步地执行任务,就像一个训练有素的员工一样。举个栗子,你每天都要把大量的客户信息从一个表格复制到另一个系统中,这项工作既枯燥又容易出错。有了 RPA,你只需要设置好规则,机器人就能自动完成这项工作,省时省力又准确。RPA 和传统的 IT 自动化不太一样。原创 2024-12-13 01:15:00 · 1712 阅读 · 0 评论 -
【有啥问啥】大语言模型Prompt中的“System指令”:深入剖析与误区澄清
system指令”虽然是一个便于理解的术语,但它并不能准确地描述大语言模型的工作原理。LLM的强大之处在于其对自然语言的理解和生成能力,我们可以通过精心设计prompt来引导模型完成各种任务。因此,理解prompt的组成和优化方法,对于提升与LLM的互动质量至关重要。随着技术的进步,prompt设计已经成为一项核心技能,掌握高效的prompt设计技巧,将大大提升与LLM互动的效率和效果。未来,随着LLM在更多领域的应用,如何更精准地设计和调优prompt,可能成为AI技术应用中的一项关键能力。原创 2024-12-13 00:15:00 · 1841 阅读 · 0 评论 -
【有啥问啥】OpenAI发布Meta-Prompt:让提示词工程更上一层楼
作为提示词工程领域的一项革命性创新,Meta-Prompt不仅优化了传统的提示词设计方法,还为大型语言模型提供了更加精准、高效的控制手段。通过系统化的设计流程和精细化的优化方法,Meta-Prompt显著提升了模型的理解能力、生成文本的质量和提示词工程的便捷性。随着技术的不断发展和应用场景的不断拓展,Meta-Prompt有望在智能化优化、跨语言支持和多模态融合等方面取得进一步突破,为自然语言处理任务提供更加灵活、精准的解决方案。原创 2024-12-02 01:15:00 · 1657 阅读 · 0 评论 -
【有啥问啥】OpenAI提出的五级AGI:技术解析与未来展望
传送门链接:大模型时代AGI还是泡沫?AGI到底是什么?AGI指的是能够像人类一样具备广泛智能的人工系统。与当前大多数AI系统(例如,专注于特定任务的AI,如图像识别、语音识别)不同,AGI能够在多个领域中执行各种任务,并具有跨领域的学习能力。这意味着,AGI不仅能完成预定的任务,还能够理解新的任务、调整策略、解决从未遇到过的问题。AGI的实现被认为是人工智能发展的终极目标,而OpenAI提出的五级AGI模型,为我们理解这一目标的逐步达成提供了理论框架。原创 2024-12-02 00:15:00 · 3429 阅读 · 0 评论 -
【有啥问啥】大模型应用中的“大海捞针”实验是什么?
大海捞针”实验是一种评估大型语言模型(LLM)在处理长文本时提取关键信息能力的有效方法。该实验通过模拟在大量文本中查找特定信息的过程,来检验模型对复杂、冗长文本的理解与解析能力。实验的核心在于将关键信息(比喻为“针”)隐藏于长篇文本(比喻为“大海”)之中,并通过提问的方式引导模型定位并提取该信息。原创 2024-11-27 01:15:00 · 1328 阅读 · 0 评论 -
【有啥问啥】大模型为何做不对算术题(算术大翻车)?
大模型在算术任务上的表现目前仍存在诸多不足,主要归因于其在符号推理、数字表示和训练数据等方面的固有局限性。为了有效提升大模型的算术能力,需要从多个维度进行深入探索和改进。通过引入符号推理模块、改进数字表示方式、扩充训练数据和探索新的模型架构,可以显著提高模型在算术任务上的表现。未来,随着相关研究的不断深入和技术的持续创新,大模型在数值计算方面的能力必将迎来显著提升,为人工智能技术的发展开辟新的道路,为人类社会带来更多智能和精准的服务与支持。原创 2024-11-27 00:15:00 · 1776 阅读 · 0 评论 -
【有啥问啥】基于文本的图像检索(Text-Based Image Retrieval, TBIR)技术详解
基于文本的图像检索技术是连接人类语言与视觉世界的桥梁,它为我们提供了一种更加智能、高效的方式来搜索图像。随着人工智能技术的不断进步,TBIR系统在准确度、鲁棒性和用户体验等方面将不断提升。未来,随着多模态技术的发展,TBIR将在更多领域得到广泛应用,为我们带来更便捷的服务。原创 2024-11-19 15:56:12 · 1655 阅读 · 0 评论 -
【有啥问啥】复习一下什么是NMS(非极大值抑制)?
NMS作为目标检测算法中的重要后处理步骤,对于提高检测准确性和效率具有重要意义。通过深入理解NMS的工作原理和代码实现,我们可以更好地掌握目标检测算法的整个流程。同时,了解NMS的改进和优化方法,也有助于我们进一步提升目标检测模型的性能。在未来的研究中,我们可以继续探索NMS的新方法和新技术,以推动目标检测领域的发展。原创 2024-11-19 15:56:59 · 2127 阅读 · 0 评论 -
【有啥问啥】智能座舱中的DDAW认证是什么?
DDAW认证是对车辆配备的DDAW系统进行的一种法规认证,旨在确保DDAW系统符合相关法规要求,能够有效监控驾驶员的困倦程度,并在驾驶员因困倦而无法安全驾驶时发出警告。欧盟的DDAW法规于2021年8月正式颁布生效,并于2022年7月起对所有新车型强制实施,2024年7月起对所有新车强制实施。这一法规的出台不仅推动了DDAW系统在车辆中的普及,也提高了车辆的安全性能。同时,该法规还规定了DDAW系统的测试方法和评估标准,以确保系统的准确性和可靠性。原创 2024-10-24 08:59:56 · 1776 阅读 · 0 评论 -
【有啥问啥】智能座舱中的ADDW认证是什么?
ADDW认证作为智能座舱领域的一项重要安全认证,正逐步成为提升行车安全的新标准。通过严格的测试和认证流程,ADDW系统能够实时监测驾驶员的视线方向,判断驾驶员是否处于分心状态,并及时发出警告,从而有效减少因驾驶员分心导致的交通事故。随着技术的不断进步和市场的日益成熟,ADDW认证将为更多汽车厂商所采用,为消费者提供更加安全、智能的驾驶体验。这不仅将提升道路安全水平,还将推动汽车行业的智能化和可持续发展。原创 2024-10-24 08:56:47 · 1351 阅读 · 0 评论 -
【有啥问啥】智能座舱中的儿童遗留检测(CPD,Child Presence Detection)技术详解
CPD系统作为一项重要的车辆安全技术,对于保护儿童免受因被遗忘在车内而导致的热中暑危险具有重要意义。随着技术的不断进步和法规的推动,CPD系统将在未来得到广泛应用和普及。我们有理由相信,在不久的将来,CPD将成为所有新车的标配功能之一,为儿童乘车安全提供更加坚实的保障。同时,我们也期待更多的技术创新和突破能够不断涌现,为智能座舱和车联网技术的发展注入新的活力和动力。通过全社会的共同努力和合作,我们可以为家庭和社会创造一个更加安全、舒适、便捷的出行环境。原创 2024-10-23 10:44:37 · 4478 阅读 · 0 评论 -
【有啥问啥】CLIP Adapter:提升视觉语言模型性能的利器
CLIP Adapter作为一种轻量级且高效的模型扩展方法,为CLIP模型的应用提供了更多的可能性。通过引入适配层,CLIP Adapter能够在保持CLIP模型强大表征能力的同时,更好地适应下游任务,从而提升模型的性能。未来,随着研究的深入和技术的不断发展,CLIP Adapter有望在更多领域和任务中展现出其独特的优势和价值。我们期待看到更多关于CLIP Adapter的创新研究和应用实践,为视觉语言模型的发展注入新的活力。原创 2024-10-23 10:41:00 · 2273 阅读 · 0 评论 -
【有啥问啥】SlowFast网络:计算机视觉中的视频理解新范式
SlowFast网络是一种创新的双模态卷积神经网络(CNN),它利用两个并行的CNN流——慢速流(Slow)和快速流(Fast)——来分别处理视频中的静态和动态信息。慢速流专注于捕捉全局空间信息,如场景布局和物体结构;而快速流则专注于捕捉短期运动信息,如物体的运动轨迹和速度变化。原创 2024-10-18 10:54:34 · 2795 阅读 · 2 评论 -
【有啥问啥】小米互传(Mi Share)背后的技术原理浅谈
在信息化社会中,文件传输已成为人们日常生活与工作中不可或缺的部分。小米作为全球领先的智能硬件品牌,其手机和电脑之间的文件传输技术小米互传(Mi Share)备受用户关注。本文将从技术原理、对比分析、用户体验、应用场景及未来发展趋势等多个维度,深入解析小米互传的核心技术,并探讨其潜在的发展方向。原创 2024-10-15 16:15:10 · 2928 阅读 · 0 评论 -
【有啥问啥】亚像素卷积(Sub-pixel Convolution):深入浅出图像超分辨率技术
亚像素卷积作为一种高效的超分辨率方法,凭借其简单、快速和效果优异的特点,在图像处理领域有着广泛的应用前景。通过对其原理、实现细节、实验对比的详细解析,本文希望为读者提供一个清晰的理解路径,帮助大家更好地应用这一技术。原创 2024-10-15 16:13:07 · 2132 阅读 · 0 评论 -
【有啥问啥】 群体智能(Swarm Intelligence):从自然到人工智能的深度探索
群体智能作为一种新兴的研究领域,为我们提供了一种全新的视角来理解复杂系统的行为和机制。通过对自然界中群体行为的研究和模拟,我们可以开发出更智能、更有效的算法和系统,解决传统方法难以解决的问题。随着相关技术的不断发展和完善,群体智能将在未来发挥更加重要的作用,推动科技进步和社会发展。此外,随着物联网、大数据、云计算等技术的快速发展,群体智能算法将与这些技术紧密结合,共同推动人工智能领域的创新和发展。例如,通过物联网技术实现智能设备的互联和数据的实时采集,为群体智能算法提供丰富的数据源;原创 2024-10-09 13:46:55 · 3955 阅读 · 0 评论 -
【有啥问啥】逆向工程(Reverse Engineering,RE):深度解析与技术方法
逆向工程是一种对既有产品、系统或过程进行深入分析和研究的技术手段,旨在通过逆向推导的方式,揭示其内部结构、工作原理、功能特性及技术规格等设计要素。这一过程不仅限于简单的复制,更侧重于对设计理念和技术的深入理解与再创造。逆向工程的应用范围广泛,涵盖了从硬件设备的物理结构分析到软件代码的逆向编译,再到文档与通信协议的深度解析等多个层面。原创 2024-10-09 13:44:32 · 2862 阅读 · 0 评论 -
【有啥问啥】SE(Squeeze-and-Excitation)架构详解
在深度学习,特别是计算机视觉领域,卷积神经网络(CNN)的发展日新月异。为了进一步提升CNN的特征提取能力和模型性能,研究者们不断探索新的网络架构和组件。其中,Squeeze-and-Excitation(SE)架构作为一种创新的特征重标定机制,自提出以来便受到了广泛的关注和应用。本文将详细解析SE架构的工作原理、实现方式、优势及其在不同网络架构中的应用。原创 2024-10-08 10:39:11 · 2049 阅读 · 0 评论 -
【有啥问啥】深度探索:COG Agent与GUI Agent的工作原理与实施策略
COG Agent是一个专注于图形界面自动化的工具,依托于大规模视觉语言模型(VLM),其主要功能包括界面元素的自动识别、理解和操作。COG Agent无需依赖文本或DOM解析,而是通过感知界面图像内容直接做出操作决策。其强大的视觉和语言处理能力,使其在面对动态、复杂的GUI任务时表现出色。原创 2024-10-08 10:35:33 · 1584 阅读 · 0 评论