读论文的时候又遇到了这几个,precision和recall没什么好说的,精确率和召回率,如果不了解的话可以看看小米菲的另一篇博客~通俗解释查准率和查全率的区别。
准确率其实和精确率、召回率这两者也有很大关系:

看到了吗,回到上篇博文的西瓜问题,其实precision关注的都是我挑出的的真正好瓜(正例)占我挑出的瓜的比例;而recall关注的是我挑出的真正好瓜(正例)占瓜农那里好瓜总数的比例。
| P | N | |
|---|---|---|
| T | TP | TN |
| F | FP | FN |
P(Positive)表示我目前预测这个西瓜是好西瓜。
N(Negative)表示我目前预测这个西瓜是坏西瓜。
T(True)表示我预测对了
F(False)表示我预测错了

本文介绍了在二分类问题中常用的评估指标,包括准确率accuracy、精确率precision、召回率recall和F1-score。通过一个西瓜挑选的例子,详细解释了这些指标的含义及其计算方式,强调了F1-score作为精确率和召回率调和平均数的特点。
最低0.47元/天 解锁文章
3577

被折叠的 条评论
为什么被折叠?



