讲讲accuracy、precision、recall、f1-score这几个经典评估指标

本文介绍了在二分类问题中常用的评估指标,包括准确率accuracy、精确率precision、召回率recall和F1-score。通过一个西瓜挑选的例子,详细解释了这些指标的含义及其计算方式,强调了F1-score作为精确率和召回率调和平均数的特点。
摘要由CSDN通过智能技术生成

读论文的时候又遇到了这几个,precision和recall没什么好说的,精确率和召回率,如果不了解的话可以看看小米菲的另一篇博客~通俗解释查准率和查全率的区别

准确率其实和精确率、召回率这两者也有很大关系:
在这里插入图片描述
看到了吗,回到上篇博文的西瓜问题,其实precision关注的都是我挑出的的真正好瓜(正例)占我挑出的瓜的比例;而recall关注的是我挑出的真正好瓜(正例)占瓜农那里好瓜总数的比例。

P N
T TP TN
F FP FN

P(Positive)表示我目前预测这个西瓜是好西瓜。
N(Negative)表示我目前预测这个西瓜是坏西瓜。

T(True)表示我预测对了
F(False)表示我预测错了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值