LandscapeMi

landscapemi的博客

推荐算法:高级算法

主要算法 Deep learning Factorization machines Tensor machines social recommendation learn to rank http://www.infoq.com/cn/articles/recommendation-algor...

2016-08-19 09:36:00

阅读数:236

评论数:0

推荐算法:社交化网络:社交网络

定义 如何融合社交网络信息到矩阵分解中,用于提升推荐的准确度 已知 M个用户 N个物品 用户的显式或者隐式反馈位评分矩阵 R∈RM∗NR\in R^{M*N} Ru,iR_{u,i}式用户 u对物品i的反馈u 对物品 i的反馈 用户的历史行为数据是 D=(u,i,r)D=(u ,i ,r) 用户的...

2016-08-01 12:58:38

阅读数:2071

评论数:0

推荐算法:社交化网络:基础

1. 摘要 冷启动:(图算法) 提高精度:(libfm模型) 模型融合:(使用排序学习来融合社交网络信息和CF的推荐信息) 2. 推荐的场景推荐的要素 用户:对物品的兴趣和兴趣的描述=历史行为+人口统计学+社交网络信息等=构建用户生命周期模型和兴趣偏好模型 物品直接的关系:物品内容模型 匹配:推...

2016-08-01 11:51:43

阅读数:582

评论数:0

推荐算法:推荐系统的评估

用户调查 在线评估:A/B test 离线评估 1.在线评估 将真实线上用户分组,对不同的组采用不同的方案同时运行,两个或者两个以上的方案 两个方案,只有一个变量不同 有明确的评价指标 试验中用户,从始而终,只接触一个方案 ABtest最常用的场景是 网页优化,测评指标:单击率,转化率等; Mys...

2016-07-25 13:18:23

阅读数:9010

评论数:2

推荐算法:模型的组合

1. 分类并行式 加权式:推荐系统对多种推荐算法的结果进行加权平均,产生单一的推荐结果 切换式:推荐系统在不同的推荐算法中进行切换,已适应当前的推荐场景 混杂式:推荐系统同时呈现多种推荐算法的结构

2016-07-24 17:45:30

阅读数:380

评论数:0

推荐算法:基于情景的推荐

预过滤 后过滤 建模 => 将用户和物品放入,特定的情景中,考虑; 消费者的决策,和他当时的心情是相关的; 1. 建模 将情景作为附加数据集合 从二维推荐到三维 R:User∗Item∗Context−−>RatingR: User*Item*Context --> Ra...

2016-07-24 12:10:20

阅读数:1722

评论数:0

推荐算法:基于约束的推荐

基于知识的推荐 1. 分类 基于样例的推荐 基于约束的推荐 相似点 收集用户需求 找不到推荐方案下,自动修复与需求的不一致性 给出合理的推荐解释 区别 推荐方案如何产生 样例:相似度计算 约束:使用预先定义好的知识库(用户需求描述和产品信息的关联程度) 2. 约束推荐 基本约束推荐两个变量:Vc...

2016-07-23 21:22:24

阅读数:732

评论数:0

推荐算法:基于svd的算法:比较

svd和cfsvd 插值是从过去所有的评分中得到的,全局求解; 关联物品 i 和 j 的权重被分解为两个向量的内积 CF 局部的观点

2016-07-23 17:40:07

阅读数:199

评论数:0

推荐算法:基于svd的算法:基于领域

基本的方法:CF @@@ An Algorithmmic framework for performing collaborative filtering 1. cf 方法的优点 相对简单 可解释性好 提高了用户体验 实时性好 2. 增强的CF方法(全局化的领域矩阵) CF方法本质是:局部算法 ...

2016-07-22 21:21:54

阅读数:532

评论数:0

推荐算法:基于svd的算法:svd

2006年netflix比赛 1. 基础知识符号定义 用户:{u, v} 物品:{i, j, l} 评分:ruir_{ui} => 取值范围1到5 预测评分:r^ui\hat{r}_{ui} 评分发生的时间:tuit_{ui} =>表示ruir_{ui}发生的时间 数据集合的稀疏程度:...

2016-07-10 07:09:47

阅读数:3026

评论数:0

推荐算法:基于图的算法:随机游走

ItemRank @@@Random-walk computation of similarities between nodes of a graph,with application tp collaborative recommendations 拉普拉斯矩阵 http://doc...

2016-07-07 18:47:32

阅读数:7450

评论数:0

推荐算法:基于图的算法:基于路相似度_续

最短路径的方法@@@Horting Hatchers an Egg:A new graph-theoretic approach o coll计算用户u到其他用户v的最短路。 最短路径的计算:用户A,horts,用户B(A,B对相同的物品评过分) 满足一个可预测性的关系,就是吧将用户u和用户v...

2016-06-25 17:01:01

阅读数:1084

评论数:0

推荐算法:基于图的算法:基于路相似度

图中两个节点的距离,通过计算,用于连接两个节点的路径的数目和这些路径的长度所构成的函数来获得。

2016-06-18 21:10:04

阅读数:205

评论数:0

推荐算法:基于图的算法:pagerank

基本模型*随机游走模型 针对浏览网页的用户行为建立的抽象模型 直接跳转:打开浏览器,输入网址,然后根据链接跳转转移概率矩阵 则可以组织这样一个N维矩阵:其中i行j列的值表示用户从页面j转到页面i的概率 M=⎡⎣⎢⎢⎢⎢01/31/31/31/201/2000011/21/200[AA,BA,C...

2016-06-15 23:27:04

阅读数:2745

评论数:0

推荐算法:基于内容的推荐_1:内容推荐算法

基于内容的推荐:推荐给用户他们过去喜欢的类似产品; 基于CF的推荐,识别出具有相同爱好的用户,给他们推产品 基于内容的推荐算法基于内容推荐的步骤 对数据内容分析,得到物品的结构化描述 分析用户过去的评分或评论过的物品的,作为用户的训练样本 生成用户画像 a.可以是统计的结果(后面使用相似度计算)...

2016-06-14 13:59:30

阅读数:5525

评论数:0

推荐算法:基于图的算法

@@@a random-walk based scoring algorithm for recommender engines @@@ applying associative retrieval techniques to alleviate the sparsity problem in ...

2016-06-05 13:15:40

阅读数:643

评论数:0

推荐算法:协调过滤初级_3:基于降维的方法

解决:受限覆盖和数据稀疏 将物品将维到隐变量空间来突出特性 @@@modeling relationship at multiple scales to improve accuracy of large recommender system @@@learning collaborativ...

2016-06-05 12:33:57

阅读数:202

评论数:0

推荐算法:协调过滤初级_2:基于领域的方法

协同过滤 基于领域的方法 @@@Empirical analysis of predictive algorithms for collabotive filtering (a) user-based @@@ GroupLens:applying collative filtering t...

2016-05-30 13:37:43

阅读数:603

评论数:0

推荐算法:协调过滤初级_1:简介

推荐系统:定义为评估用户对新物品的反馈 三种反馈: 分级反馈 二元反馈 一元反馈 问题定义 用户:uu;物品集合:TT;系统评分集合:RR;可选分数集合:SS 用户uu对于物品ii的评分:ruir_{ui} 已经对物品ii评分的uu的集合:uiu_i 用户uu 所评价的物品集合: T...

2016-05-30 11:35:02

阅读数:387

评论数:0

推荐算法:基于内容的推荐_4: 趋势

社会化标签略(后面分析)惊喜度 基于内容推荐惊喜度低:推荐和用户评价过的类似的产品

2016-05-29 22:24:43

阅读数:172

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭