Fast R-CNN讲解

Fast R-CNN 结构

在这里插入图片描述

讲解一-提取特征,候选区选择,分类,回归

详见R-CNNhttps://blog.csdn.net/milk_and_bread/article/details/106230275

讲解二-ROI Pooling

在这里插入图片描述
在这里插入图片描述
总结框的大小不同,但都划分为9块,最终池化也得到3*3的特征图。
并且SPP-Net的金字塔池化层是对同一个图片池化,得到不同尺度的特征图,并迭加。较比而言,Fast R-CNN统一了特征图的大小,并且有金字塔池化层的对多个特征图迭加的效果。

讲解三-Fast R-CNN与R-CNN的区别

在这里插入图片描述

在这里插入图片描述

讲解四-Fast R-CNN结果分析

在这里插入图片描述
S,M,L:分别是卷积的大小的规模(小中大)
在这里插入图片描述

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 像素格子 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读