基于微信小程序的中药材知识科普学习系统

项目介绍

  1. 用户功能
    首页:提供系统的基本信息概览,包括最新的科普文章、论坛公告和推荐学习视频。
    个人中心:用户可以查看和编辑自己的个人资料,包括用户名、头像等。
    我的收藏:用户可以查看和管理自己收藏的中药材信息、学习视频和科普文章。
    发帖详情:用户可以查看自己或他人的发帖,包括帖子内容、评论和点赞功能,可以收藏贴。
    中药材信息:展示中药材的详细信息,如药用部分、功能主治、用法用量等显示图片哈,图文结合。
    学习视频:提供与中药材相关的教育视频,支持搜索和分类查看。
    论坛公告:展示管理员发布的最新论坛公告。
    在线咨询:聊天机器人自动回复,后台设定好关键字和回复内容,用户输入关键字会自动回复。
    科普文章:发布关于中药的科普类文章,增强用户对中药的了解和兴趣。
  2. 管理员功能
    首页:展示系统的统计信息,如用户数量、帖子数量等。
    用户管理:管理用户的注册信息,包括添加、删除、修改和查询用户信息。
    发帖管理:管理用户的帖子,包括审核、删除或编辑帖子。
    学习视频管理:管理系统中的学习视频,包括上传、编辑和删除视频内容。
    中药材信息管理:管理中药材的信息,包括添加新的中药材信息、编辑和删除现有信息。
    系统管理:管理系统的基础设置,如服务器配置、备份与恢复等。
    权限管理:设置和管理用户的访问权限和角色。
    论坛公告管理:发布和管理论坛公告。

具体实现截图

同行可拿货,招校园代理

学习
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

主要技术与实现手段

本系统支持以下技术栈
数据库 mysql 版本不限
数据库工具:Navicat/SQLyog等都可以
小程序端运行软件 微信开发者工具/hbuiderx
1.Spring Boot-ssm (Java):基于 Spring Boot/ssm 构建后端服务,处理业务逻辑,管理数据库操作等。
2.python(flask/django)–pycharm/vscode
3.Node.js + Express:使用 Node.js 和 Express 框架搭建处理用户请求、数据交互、订单管理等。
4.php(Thinkphp-Laravel)-hbuilderx
uni-app框架:使用Vue.js开发跨平台应用的前端框架,编写一套代码,可编译到Android、小程序等平台。

关于我

全网粉丝10W+、CSDN作者、博客专家、全栈领域优质创作者、平台优质Python,JAVA创作者、专注于Python,Java、小程序技术领域和毕业项目实战💯
技术范围:uniapp框架,Android,Kotlin框架,koa框架,express框架,go语言,laravel框架,thinkphp框架,springcloud,django,flask框架,SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。

本系统开发思路

微信小程序前端开发:运用微信开发者工具,设计简洁美观、交互友好的界面。实现页面布局、组件设计、用户交互效果等,确保在不同移动设备上的兼容性和显示效果。
(1)微信开发者工具: 提供小程序开发、调试、发布等功能,用于前端开发。
(2)Node.js/java/python/php: 用于后端服务搭建和逻辑处理。
(3)MySQL/MongoDB: 用于数据存储和管理,设计合适的数据库结构。
(4)API接口开发: 设计并实现前后端的接口通信,保证数据传输的稳定和安全性。
(5)安全加密手段: 使用HTTPS协议保障数据传输的安全性,确保用户隐私不被泄露。
(6)界面设计工具: 如Adobe XD、Sketch等,用于设计用户友好的界面和交互体验
数据库设计:设计合理的数据库结构如MySQL、MongoDB等,包括用户表、收藏表,评价表等。确定各表之间的关联关系,保证数据的完整性和一致性。
系统部署与测试:将前端代码部署到微信小程序平台,部署后端服务到云服务器或其他托管平台,进行系统整体测试和优化。
(1)数据库结构的建立
(2)后台数据的增加,修改删除
(3)前台和后台数据的同步
HBuilderX,H是HTML的首字母,Builder是构造者,X是HBuilder的下一代版本。我们也简称HX
HX轻如编辑器、强如IDE的合体版本。
HX支持java插件、nodejs插件,并兼容了很多vscode的插件及代码块。
还可以通过外部命令,方便的调用各种命令行功能,并设置快捷键。
如果你习惯了其他工具(如vscode或sublime)的快捷键,在菜单工具-快捷键方案中可以切换。

java类核心代码部分展示

 /**
     * 协同算法(基于用户的协同算法)
     */
    @RequestMapping("/autoSort2")
    public R autoSort2(@RequestParam Map<String, Object> params,ShangpinfenleiEntity shangpinfenlei, HttpServletRequest request){
        String userId = request.getSession().getAttribute("userId").toString();
        Integer limit = params.get("limit")==null?10:Integer.parseInt(params.get("limit").toString());
        // 查询订单数据
        List<OrdersEntity> orders = ordersService.selectList(new EntityWrapper<OrdersEntity>());
        Map<String, Map<String, Double>> ratings = new HashMap<>();
        if(orders!=null && orders.size()>0) {
            for(OrdersEntity o : orders) {
                Map<String, Double> userRatings = null;
                if(ratings.containsKey(o.getUserid().toString())) {
                    userRatings = ratings.get(o.getUserid().toString());
                } else {
                    userRatings = new HashMap<>();
                    ratings.put(o.getUserid().toString(), userRatings);
                }
                if(userRatings.containsKey(o.getGoodid().toString())) {
                    userRatings.put(o.getGoodid().toString(), userRatings.get(o.getGoodid().toString())+1.0);
                } else {
                    userRatings.put(o.getGoodid().toString(), 1.0);
                }

            }
        }
        // 创建协同过滤对象
        UserBasedCollaborativeFiltering filter = new UserBasedCollaborativeFiltering(ratings);

        // 为指定用户推荐物品
        String targetUser = userId;
        int numRecommendations = limit;
        List<String> recommendations = filter.recommendItems(targetUser, numRecommendations);

        // 输出推荐结果
        System.out.println("Recommendations for " + targetUser + ":");
        for (String item : recommendations) {
            System.out.println(item);
        }

        EntityWrapper<ShangpinfenleiEntity> ew = new EntityWrapper<ShangpinfenleiEntity>();
        ew.in("id", recommendations);
        ew.eq("onshelves","1");
        if(recommendations!=null && recommendations.size()>0 && recommendations.size()>0) {
            ew.last("order by FIELD(id, "+String.join(",", recommendations)+")");
        }

        // 根据协同结果查询结果并返回
        PageUtils page = shangpinfenleiService.queryPage(params, MPUtil.sort(MPUtil.between(MPUtil.likeOrEq(ew, shangpinfenlei), params), params));
        List<ShangpinfenleiEntity> pageList = (List<ShangpinfenleiEntity>)page.getList();
        if(recommendations!=null && recommendations.size()>0 && pageList.size()<limit) {
            int toAddNum = limit-pageList.size();
            ew = new EntityWrapper<ShangpinfenleiEntity>();
            ew.notIn("id", recommendations);
            ew.orderBy("id", false);
            ew.last("limit "+toAddNum);
            pageList.addAll(shangpinfenleiService.selectList(ew));
        } else if(pageList.size()>limit) {
            pageList = pageList.subList(0, limit);
        }
        page.setList(pageList);

        return R.ok().put("data", page);
    }


 

结论

考虑到系统的技术栈包括Java、SpringBoot、Vue.js、Mybatis以及Node.js,以下分析各技术的可行性和兼容性,确保系统的稳定和高效运行。这些是Java开发的主流集成开发环境(IDE),均支持SpringBoot和Mybatis插件,便于开发和调试。它们提供了丰富的开发工具和插件生态系统,使得后端开发和管理变得简单高效。作为服务器端的JavaScript运行环境,Node.js支持构建高性能的网络应用,特别是在处理大量并发连接时表现出色,适合实现系统的某些后端服务。
(1)功能上应能够满足目前毕业设计的有关规定,核算准确,自动化程度高,操作使用简便。
(2)性能上应合理考虑运行环境、用户并发数、通信量、网络带宽、数据存储与备份、信息安全与隐私保护等方面的要求。
(3)技术上应保持一定的先进性,选择合适的开发工具(如java(SSM+springboot)/python(flask+django)/thinkphp/Nodejs/等)完成系统的实现,开发文档完备。
(4)实现的系统应符合大众化审美观,界面、交互、操作等方面尊重用户习惯。
(5)严格按照毕业设计时间进度安排,有计划地开展各阶段工作,保质保量完成课题规定的任务,按时提交毕业设计说明书等规定成果。

源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

需要成品或者定制,加我们的时候,不满意的可以定制
文章最下方名片联系我即可~ 所有项目都经过测试完善,本系统包修改时间和标题,包安装部署运行调试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值