Pandas.Series.cummin() 累积最小值 详解 含代码 含测试数据集 随Pandas版本持续更新

本文详细介绍了Pandas库中Series.cummin()函数的使用,包括计算公式、参数解读(如axis、skipna)、以及针对字符串和缺失值的处理示例。读者可借此了解如何在实际项目中应用此功能。

关于Pandas版本: 本文基于 pandas2.2.0 编写。

关于本文内容更新: 随着pandas的stable版本更迭,本文持续更新,不断完善补充。

传送门: Pandas API参考目录

传送门: Pandas 版本更新及新特性

传送门: Pandas 由浅入深系列教程

Pandas.Series.cummin()

Pandas.Series.cummin 方法用于返回 Series 每一个元素与前面所有元素的累积最小值

⚠️ 注意 :

  1. 字符串可以求累积最小值,其大小是根据字符编码决定的。 例1

    • 字符串不能和任何其他类型数据混用,比如 缺失值、数值,否则报错 TypeError

计算公式:

  • 累积最小值计算公式:

    M i = max ⁡ ( x 1 , x 2 , … , x i ) M_i = \max(x_1, x_2, \ldots, x_i) Mi=max(x1,x2,,xi)

    M i M_i Mi 表示当前位置的累积最小值, max ⁡ ( x 1 , x 2 , … , x i ) \max(x_1, x_2, \ldots, x_i) max(x1,x2,,xi) 表示从起始位置到当前位置的所有元素的最小值。

语法:

Series.cummin(axis=None, skipna=True, *args, **kwargs)

返回值:

  • Series or Series

参数说明:

axis 指定计算方向(行或列)

  • axis : {0 or ‘index’, 1 or ‘columns’}, default 0

    axis 参数,对于 Series 无效

skipna 忽略缺失值

  • skipna : bool, default True >

    skipna 参数,用于指定求累积最小值的时候是否忽略缺失值,默认 skipna=True 表示忽略缺失值:

    • True: 忽略缺失值。当遇到缺失值,会跳过缺失值,以缺失值上面的最近有效值继续后面的计算。 例2
    • False: 不忽略缺失。但是后面的所有结果将都是缺失值。例3

*args,**kwargs

  • 为了保持与 Numpy 的兼容性而保留的参数,一般不需要传递任何内容。

相关方法:

➡️ 相关方法


示例:

测试文件下载:

本文所涉及的测试文件,如有需要,可在文章顶部的绑定资源处下载。

若发现文件无法下载,应该是资源包有内容更新,正在审核,请稍后再试。或站内私信作者索要。

测试文件下载位置.png

测试文件下载位置

例1:字符串求累积最小值,其实是字符串编码的大小比较

import numpy as np
import pandas as pd

s = pd.Series(["一", "二", "三"])

s.cummin()
0    一
1    一
2    一
dtype: object

由上面结果可见,字符串是支持累积最小值计算的,只不过是根据其字符编码比较大小。

例2、默认会跳过缺失值,以缺失值上面的最近有效值,进行后面的计算

import numpy as np
import pandas as pd

s = pd.Series([2.0, 1.0,3.0, np.nan, 0.0])

s.cummin()
0    2.0
1    1.0
2    1.0
3    NaN
4    0.0
dtype: float64

例3、如果不忽略缺失值,后面所有的结果,将都是缺失值。

import numpy as np
import pandas as pd

s = pd.Series([2.0, 1.0,3.0, np.nan, 0.0])

s.cummin(skipna=False)
0    2.0
1    1.0
2    1.0
3    NaN
4    NaN
dtype: float64
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数象限

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值