[论文阅读] 激光点云分割-RandLANet

RandLANet

paper 原论文的链接
code: 源代码链接

1. 主要思想

通过什么方式,解决了什么问题

主要工作是提出了使用简单快速的随机采样方法减少点云密度,然后应用设计的局部特征聚合(Local Feature Aggregation)模块来提取并保留点云的主要特征。

  • 这个paper的主要思想是:减少采样的执行代价,通过利用随机采样的方式进行下采样;但是这种方式又会导致信息丢失,所以通过局部特征聚合的方式进行补偿这种丢失;

在这里插入图片描述

2. 具体方法

说明怎么解决的,具体设计是什么, 有什么启发性思考(作者的创新点)

2.1 局部特征聚合模块

包括三个模块**local spatial encoding(LocSE)**模块, Attentive Pooling模块和Dilated Residual Block模块

参考: https://www.sohu.com/a/398379788_715754

2.1.1 Local Spatial Encoding(LocSE

在这里插入图片描述

  • 具体如网络结构图中所示; 将周围k个点编码并用MLP生成d长度特征,在于k个临近点的特征进行拼接;得到该模块的输出;然后再送到attentive pooling中去选择特征
  • 这是对于一个点来说;其他点一样操作
  • 也就是每次都把周围环境点的位置信息编码进特征中,与前面的特征进行融合

2.1.2 Attentive Pooling模块

在这里插入图片描述
在这里插入图片描述

  • 所有特征共享一个MLP权重编码器,生成每个特征的系数
  • 将这些系数作为权重,乘以特征并相加,如公式3所示
  • 最后再用一个shared MLP进行编码
  • s i s_i si的特征shape是怎样的? 应该是每个feature(长度为d)获取一个长度为d的归一化权重,代表该特征的不同位置的选取情况; 不是每个特征得到一个标量,表示该特征的程度;

2.1.3 Dilated Residual Block模块

作者借鉴了ResNet设计了扩展残差网络,其网络可见图2。在步骤1和2中,通过LocSE和Attention pooling(简写为LA)能够增加感受野,如图3所示。理论上来说,通过叠加LA网络结构,能够不断增加感受野,但会带来大量的计算。为了减小计算量,作者在RandLA-Net中只堆叠了两层,然后用一个残差连接来减小计算量,平衡效率与有效性之间的关系。

2.2 最后整体网络

在这里插入图片描述

3. 实验支撑

记录一些关键实验的结论分析,具有启发性的实验和结论

在这里插入图片描述

4. 总结启示

针对中心思想和实验结论的总结和扩展思考
扩展思考 : 也就是用自己已有的知识或者自己的“土话”,重新理解paper(费曼学习法的精髓-便于记忆和举一反三的应用)

  • 注意力机制的使用很巧妙,而且很有启发性
  • rand 采样的使用值得思考(也就是有些采样会导致性能下降,但是可以通过其他增强特征的方式补偿回来,从而带来既能速度提升,也能保证性能

5. 相关文献

主要的比较贴近的文献,关键性文献

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值