文章目录
RandLANet
1. 主要思想
通过什么方式,解决了什么问题
主要工作是提出了使用简单快速的随机采样方法减少点云密度,然后应用设计的局部特征聚合(Local Feature Aggregation)模块来提取并保留点云的主要特征。
- 这个paper的主要思想是:减少采样的执行代价,通过利用随机采样的方式进行下采样;但是这种方式又会导致信息丢失,所以通过局部特征聚合的方式进行补偿这种丢失;

2. 具体方法
说明怎么解决的,具体设计是什么, 有什么启发性思考(作者的创新点)
2.1 局部特征聚合模块
包括三个模块**local spatial encoding(LocSE)**模块, Attentive Pooling模块和Dilated Residual Block模块
参考: https://www.sohu.com/a/398379788_715754
2.1.1 Local Spatial Encoding(LocSE

- 具体如网络结构图中所示; 将周围k个点编码并用MLP生成d长度特征,在于k个临近点的特征进行拼接;得到该模块的输出;然后再送到attentive pooling中去选择特征
- 这是对于一个点来说;其他点一样操作
- 也就是每次都把周围环境点的位置信息编码进特征中,与前面的特征进行融合
2.1.2 Attentive Pooling模块


- 所有特征共享一个MLP权重编码器,生成每个特征的系数
- 将这些系数作为权重,乘以特征并相加,如公式3所示
- 最后再用一个shared MLP进行编码
- 注 s i s_i si的特征shape是怎样的? 应该是每个feature(长度为d)获取一个长度为d的归一化权重,代表该特征的不同位置的选取情况; 不是每个特征得到一个标量,表示该特征的程度;
2.1.3 Dilated Residual Block模块
作者借鉴了ResNet设计了扩展残差网络,其网络可见图2。在步骤1和2中,通过LocSE和Attention pooling(简写为LA)能够增加感受野,如图3所示。理论上来说,通过叠加LA网络结构,能够不断增加感受野,但会带来大量的计算。为了减小计算量,作者在RandLA-Net中只堆叠了两层,然后用一个残差连接来减小计算量,平衡效率与有效性之间的关系。
2.2 最后整体网络

3. 实验支撑
记录一些关键实验的结论分析,具有启发性的实验和结论

4. 总结启示
针对中心思想和实验结论的总结和扩展思考
扩展思考 : 也就是用自己已有的知识或者自己的“土话”,重新理解paper(费曼学习法的精髓-便于记忆和举一反三的应用)
- 注意力机制的使用很巧妙,而且很有启发性
- rand 采样的使用值得思考(也就是有些采样会导致性能下降,但是可以通过其他增强特征的方式补偿回来,从而带来既能速度提升,也能保证性能)
5. 相关文献
主要的比较贴近的文献,关键性文献

1283

被折叠的 条评论
为什么被折叠?



