python使用梯度下降法和线性回归模型对数据进行预测

一、源码

  • 主函数为线性回归模型
import sys

import numpy as np

sys.path.append('..')
from d2lzh_pytorch.utils import *

num_input = 2
num_example = 1000
true_w = [2, -3.4]
true_b = 4.2
# 生成数据集
features = torch.from_numpy(np.random.normal(0, 1, (num_example, num_input)))
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.from_numpy(np.random.normal(0, 0.01, size=labels.size()))

batch_size = 10
w = torch.tensor(np.random.normal(0, 0.01, (num_input, 1)), dtype=torch.float64)
b = torch.zeros(1, dtype=torch.float64)
w.requires_grad_(True)
b.requires_grad_(True)

# 训练模型
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    # 训练模型一共需要num_epochs个迭代周期
    # 在每一个迭代周期中,会使用训练数据集中所有样本一次(假设样本数能够被批量大小整除)。X
    # 和y分别是小批量样本的特征和标签
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y).sum()  # l是有关小批量X和y的损失
        l.backward()  # 小批量的损失对模型参数求梯度
        sgd([w, b], lr, batch_size)  # 使用小批量随机梯度下降迭代模型参数

        # 不要忘了梯度清零
        w.grad.data.zero_()
        b.grad.data.zero_()
    train_l = loss(net(features, w, b), labels)
    print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))

  • 工具类
# 本函数已保存在d2lzh包中方便以后使用
def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)])
        yield features.index_select(0, j), labels.index_select(0, j)


# 我们使用mm函数做矩阵乘法。
def linreg(X, w, b):
    return torch.mm(X, w) + b


# 使用上一节描述的平方损失来定义线性回归的损失函数。在实现中,
# 我们需要把真实值y变形成预测值y_hat的形状。以下函数返回的结果也将和y_hat的形状相同。
def squared_loss(y_hat, y):
    # 注意这里返回的是向量, 另外, pytorch里的MSELoss并没有除以 2
    return (y_hat - y.view(y_hat.size())) ** 2 / 2


# 以下的sgd函数实现了上一节中介绍的小批量随机梯度下降算法。它通过不断迭代模型参数
# 来优化损失函数。这里自动求梯度模块计算得来的梯度是一个批量样本的梯度和。我们将它
# 除以批量大小来得到平均值。
def sgd(params, lr, batch_size):
    for param in params:
        param.data -= lr * param.grad / batch_size # 注意这里更改param时用的param.data

二、结果

epoch 1, loss 0.039660
epoch 2, loss 0.000145
epoch 3, loss 0.000048

三、坑

1、报错

Traceback (most recent call last):
  File "D:/pycharm/test.py", line 34, in <module>
    l.backwards()  # 小批量的损失对模型参数求梯度
AttributeError: 'Tensor' object has no attribute 'backwards'

2、原因

  • 把l.backward()写成了l.backwards()报错。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值