统计学习方法(第二章)感知机

1 什么是感知机

机器学习中,感知机(perceptron)是二分类的线性分类模型,属于监督学习算法。输入为实例的特征向量,输出为实例的类别(取+1和-1)。感知机对应于输入空间中将实例划分为两类的分离超平面。感知机旨在求出该超平面,为求得超平面导入了基于误分类的损失函数,利用梯度下降法 对损失函数进行最优化(最优化)。感知机的学习算法具有简单而易于实现的优点,分为原始形式和对偶形式。感知机预测是用学习得到的感知机模型对新的实例进行预测的,因此属于判别模型。感知机由Rosenblatt于1957年提出的,是神经网络支持向量机的基础。输入X表示实例的特征向量,对应输入空间的点,输出空间Y表示实例的类别,属兔空间到输出空间的函数,称为感知机。

感知机是在输入空间中将实例划分为两类的超平面,感知机是判别模型。

感知机是神经网络和支持向量机(SVM)的基础,表达式如下:


sign是符号函数:

   

在二分类问题中f(x)等于+1 表示正例,f(x)等于-1表示负例。线性方程wx+b=0(直线,平面,超平面)可以分离正例和负例,如所示:



2 感知机的损失函数定义

1)自然选择:误分类的点的数目(不是w和b的函数,难以用来优化w和b)

2)误分类的点到超平面的距离和

            |wx +b|(函数距离,可以衡量相对距离)

    (几何距离)

因为正例y值为1 负例y值为-1,所以所有正确的划分:


错误的划分上式的值为负,

误分类到超平面的距离为


不考虑||w||,得到的误差函数为:


这个损失函数就是感知机学习的经验风险函数

这样,分类问题转化成求L函数的最优化问题。

         

2 感知机的学习策略


最优化的方法是随机梯度下降法(stochastic gradient descent)。简单的说,SGD是误分类驱动的就是随机初始化W0和b0,使用梯度下降法不断地最小化目标函数,即:

 


通过计算梯度(偏导数)来更新W和b,n是步长学习率,也就是更新的步长,通过不断的迭代,将误差下降为0,此后,w和b将不会改变(因为是误分类驱动的),分类模型稳定。

 η


 

实例

正样本点: x1=(3,3)T , x2=(4,3)T  
负样本点:
x1=(1,1)T  

求感知机模型f(x)=(wx+b) 其中 w=(w1,w2),

解答思路:根据上面讲解的,写初始化权值w和偏置b,然后一步一步的更新权值,直到所有的点都分正确为止。

解:

(1) 令 w0=0,b0=0  
(2) 随机的取一个点,x1


未正确分类。更新w0--> w1=w0+ny1x1,b1=b0+ny1

同理计算,最后得到w=(1,1)b=-3



yi(



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 感知机学习是一种基本的机器学习算法,用于解决二分类问题,在 Rust 中,可以使用如下代码来实现:fn perceptron (weights: &[f64], input: &[f64]) -> f64 { let mut sum = 0.0; for i in 0..weights.len() { sum += weights[i] * input[i]; } if sum > 0.0 { 1.0 } else { -1.0 } } ### 回答2: 感知机学习方法是一种简单而有效的二分类算法,可以用于对给定的数据进行分类。以下是使用Rust编写的感知机学习方法的示例代码: ```rust use rand::{thread_rng, Rng}; struct Perceptron { weights: Vec<f64>, learning_rate: f64, } impl Perceptron { fn new(num_features: usize, learning_rate: f64) -> Self { let mut rng = thread_rng(); let weights: Vec<f64> = (0..num_features).map(|_| rng.gen_range(-1.0..1.0)).collect(); Perceptron { weights, learning_rate, } } fn activate(&self, features: &Vec<f64>) -> f64 { let weighted_sum: f64 = features.iter().zip(&self.weights) .map(|(x, w)| x * w) .sum(); if weighted_sum >= 0.0 { 1.0 } else { -1.0 } } fn train(&mut self, features: &Vec<f64>, target: f64) { let prediction = self.activate(features); let error = target - prediction; for (weight, feature) in self.weights.iter_mut().zip(features.iter()) { *weight += self.learning_rate * error * feature; } } } fn main() { let training_set = vec![ (vec![0.0, 0.0], -1.0), (vec![0.0, 1.0], -1.0), (vec![1.0, 0.0], -1.0), (vec![1.0, 1.0], 1.0), ]; let mut perceptron = Perceptron::new(2, 0.1); for _ in 0..100 { for (features, target) in &training_set { perceptron.train(features, *target); } } let test_data = vec![ vec![0.0, 0.0], vec![0.0, 1.0], vec![1.0, 0.0], vec![1.0, 1.0], ]; for features in &test_data { let prediction = perceptron.activate(features); println!("Input: {:?} - Prediction: {}", features, prediction); } } ``` 在这段代码中,我们定义了一个`Perceptron`结构体,它包含了权重向量和学习率。`activate`函数用于计算加权和并将其经过阈值函数进行分类。`train`函数根据误差调整权重向量。在`main`函数中,我们定义了一个训练集和测集,并使用感知机算法对训练集进行训练。接着对测集进行分类预测并输出结果。 请注意,本示例代码可能不是最优的实现方式,但足够演示感知机学习方法的基本原理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值