Python 数据集:乳腺癌数据集(from sklearn.datasets import load_breast_cancer)。

数据集:乳腺癌数据集(from sklearn.datasets import load_breast_cancer)。

(1)将样本集划分为70%的训练集,30%作为测试集,分别用逻辑回归算法和KNN算法(需要先对数据进行标准化)建模(不指定参数),输出其测试结果的混淆矩阵,计算其准确率、查全率和假正率。

(2)利用搜索网格,分别确定逻辑回归及KNN模型的最优参数。
KNN算法的主要参数提示:
①n_neighbors(最近邻个数)
取值一般为奇数。
②algorithm(用于计算最近邻的算法)
取值有‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’等,默认为‘auto’。注意:算法选择不影响KNN的最终结果,只影响模型的性能(计算的快慢程度)。
③p(Minkowski距离的指标参数)
默认取p=2,即欧氏距离。而p=1为曼哈顿距离。如果需要使用非明氏距离的其它指标,应修改metric参数的值。
④weights(权重)
预测中使用的权重函数。可能的取值:‘uniform’:统一权重,即每个邻域中的所有点均被加权。 ‘distance’:权重点与其距离的倒数,在这种情况下,查询点的近邻比远处的近邻具有更大的影响力。

(3)对整个数据集使用K折交叉验证方式(k=2,3,4,5,6,7,8,9,10),分别用逻辑回归和KNN建模(用上一步确定的最优参数),绘图对比两种模型在k取不同值下的的分类准确率。

在这里插入图片描述

#!/usr/bin/env python
# coding: utf-8



from sklearn.datasets import load_breast_cancer
import numpy as np
from sklearn import linear_model, model_selection
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
from sklearn import datasets
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
np.set_printoptions(suppress= True) 
np.set_printoptions(precision=4)
# from pylab import mpl
# mpl.rcParams['font.sans-serif'] = ['SimHei']    # 指定默认字体:解决plot不能显示中文问题
# mpl.rcParams['axes.unicode_minus'] = False      # 解决保存图像是负号'-'显示为方块的问题




dataset = datasets.load_breast_cancer()
data = dataset.data
target = dataset.target




x_train, x_test, y_train, y_test = model_selection.train_test_split(data,target,
                                                    test_size=0.3,random_state=1)




model_logic = LogisticRegression(max_iter=10000).fit(x_train, y_train.ravel())

print(model_logic.score(x_test,y_test))

y_pred 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值