paper reading:域适应(domain adaption)-深度学习-迁移学习

DA(domain adaption):当训练集与测试集之间的分布有差异时,学习一个易于区别的分类器。
参考文章:unsupervised domain adaption by backpropogation
1、需求:

  1. 有标签的训练数据量较小;
  2. 训练集与测试集数据分布的偏移;

2、关键点:构建源域与目标域之间的映射关系;
3、previous domain adaption:worked with fixed feature representations。
4、本文特点:同时进行域适应学习与特征学习:
同时训练两个分类器:

  • label predictor:预测标签的分类器;
  • domain classifier:在训练时区分出训练集与测试集之间的特征的易于区分性;
  • 迭代时的目标函数:
    • 最小化label predictor分类器的loss函数:
    • 最大化domain classifier分类器的loss函数:

5、目标:选出的特征具有一下属性:

  • 特征具有易于区分的特性(discriminative)
  • 特征对域的变化不敏感(domain invariant

6、一般用于衡量特征分布相似度的准则:

  1. match the distribution means in the kernel reproducing Hilbert space;
  2. map the principal axes associated with each of the distributions;
  3. match feature space distributions。

在判断特征之间的相似性时:最好通过modifying the feature representation itself rather than by reweighing or geometric transform。

以下是使用DANN(Domain Adaption Neural Network)进行风力发电预测的代码示例。该模型使用了迁移学习技术,将在一个领(源)训练的模型应用于另一个领(目标)中。这个例子中,我们将在一个地区收集的风力数据作为源,然后将模型应用于另一个地区的风力数据作为目标,以预测风力发电量。 首先,我们需要导入必要的库: ```python import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from keras.models import Sequential, Model from keras.layers import Dense, Input, Concatenate from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint ``` 然后我们可以读入源和目标的数据: ```python # 读入源数据 source_data = pd.read_csv('source_data.csv') source_data = source_data.drop('date', axis=1) # 删除日期列 # 读入目标数据 target_data = pd.read_csv('target_data.csv') target_data = target_data.drop('date', axis=1) # 删除日期列 ``` 接下来,我们需要将源和目标的数据进行预处理。在这个例子中,我们将使用标准化将数据缩放到相同的范围内: ```python # 将数据分为特征和目标 source_features = source_data.drop('power', axis=1) source_target = source_data['power'] target_features = target_data.drop('power', axis=1) target_target = target_data['power'] # 对特征进行标准化 scaler = StandardScaler() source_features = scaler.fit_transform(source_features) target_features = scaler.transform(target_features) ``` 然后,我们可以定义 DANN 模型。DANN 模型由三个部分组成:共享层,源特定层和目标特定层。共享层和源特定层用于在源数据上训练模型,而共享层和目标特定层用于在目标数据上进行预测。 ```python # 定义共享层 shared_layer = Sequential() shared_layer.add(Dense(32, input_dim=7, activation='relu')) shared_layer.add(Dense(16, activation='relu')) # 定义源特定层 source_specific_layer = Sequential() source_specific_layer.add(Dense(8, input_dim=16, activation='relu')) source_specific_layer.add(Dense(1)) # 定义目标特定层 target_specific_layer = Sequential() target_specific_layer.add(Dense(8, input_dim=16, activation='relu')) target_specific_layer.add(Dense(1)) # 定义DANN模型 input_layer = Input(shape=(7,)) shared = shared_layer(input_layer) source_specific = source_specific_layer(shared) target_specific = target_specific_layer(shared) output_layer = Concatenate()([source_specific, target_specific]) dann_model = Model(inputs=[input_layer], outputs=[output_layer]) ``` 接下来,我们需要定义损失函数。在 DANN 中,我们使用两个损失函数:源损失和分类损失。源损失用于在源数据上训练模型,而分类损失用于在目标数据上进行预测。 ```python # 源损失 source_loss = 'mean_squared_error' # 分类损失 def domain_loss(y_true, y_pred): # y_true: 1表示源, 0表示目标 # y_pred: 分类器的预测 return K.mean(y_true * K.square(y_pred) + (1 - y_true) * K.square(1 - y_pred)) # 总损失 def total_loss(y_true, y_pred): return source_loss(y_true, y_pred[:, 0]) + domain_loss(y_true, y_pred[:, 1]) ``` 然后,我们可以编译模型,并在源数据上训练模型: ```python # 编译模型 dann_model.compile(optimizer=Adam(lr=0.001), loss=total_loss, metrics=[source_loss, domain_loss]) # 训练模型 dann_model.fit(source_features, np.column_stack((source_target, np.zeros(len(source_target)))), epochs=100, batch_size=32) ``` 在模型训练完成后,我们可以使用目标数据进行预测: ```python # 在目标数据上进行预测 target_predictions = target_specific_layer.predict(target_features) ``` 然后,我们可以使用预测的目标值和实际目标值之间的均方误差来评估模型的性能: ```python # 计算目标数据的均方误差 mse = np.mean(np.square(target_predictions - target_target)) print("目标数据的均方误差为:", mse) ``` 这就是使用 DANN 进行风力发电预测的代码示例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值