CINTA作业九:QR

1.证明命题11.2。

证:

​ 封闭性:∀a,b∈QRp,则∀a,b∈Z*p,a*b (mod p) = a(mod p) * b(mod p),由因为存在x,y∈Z*p,使得a ≡ x2 (mod p),b ≡ y2 (mod p),所以a * b ≡ x2 * y2 (mod p),由二次剩余的定义可得a * b = QR∈QRp

​ 结合律:∀a,b,c∈QRp,有a ≡ x12 (mod p),b ≡ x22 (mod p),c ≡ x32 (mod p),所以(a * b) * c = x12x22x32(mod p) = a * (b * c)

​ 单位元:因为a2 * 1 ≡ 1 * a2 (mod p),所以1为单位元

​ 逆元:∀a∈QRp,存在x∈Z,使得a ≡ x2 (mod p),又由a * (x-1)2 ≡ x2 * (x-1)2 ≡ 1(mod p),所以a-1 ≡ (x-1)2 (mod p)

​ 综上,得证

2.使用群论的方法证明定理11.1。

证:

​ 定义ϕ是从Z*p到QRp的映射:∀a∈Z*p,a→a2,令a,b∈Z*p,有ϕ(a * b) = (a * b)2 = a2 * b2 = ϕ(a) * ϕ(b),故ϕ是一种群同态

​ 由因为QRp的单位元为1,由Kernel定义可得Kerϕ = ϕ-1({1}) = 1,

​ 又由命题9.7可得Kerϕ为Z*p的正规子群,由标准同态的定义可知,存在同态映射ψ:Z*p→Z*p/Kerϕ,

​ 综上由第一同构定理可得存在唯一同构映射η:QRp→Z*p/Kerϕ,故有|QRp| = |Z*p/Kerϕ| = |Z*p|/|Kerϕ| = p-1/2 ,则|QNRp = p-1/2

​ 综上,得证

3.定义映射 ψ : Z*p → {±1} 为 ψ(a) = (a/p) ,∀a ∈ Z*p。请证明这是一个满同态。

证:

​ 因为ψ(a * b) = (a * b/p) = (a/p) * (b/p) = ψ(a) * ψ(b),所以ψ是一种同态,

​ 由勒让德符号的定义可得当a为QR时,ψ(a) = 1,当a为QNR时ψ(a) = -1,故ψ是满射,综上可证ψ是一种满同态

4.设 p 是奇素数,请证明 Z*p 的所有生成元都是模 p 的二次非剩余。

证:

​ 令g为Z*p的生成元,且g是一个QR,则存在x∈Z*p,使得g ≡ x2(mod p),由例7.5的结论可得,|g| = |Z*p| = p-1,因为Z*p的单位元为1,所以由阶的定义可得gp-1 ≡ x2(p-1) ≡ 1 (mod p),由费尔马小定理得ap-1 ≡ 1(mod p),所以有g(p-1)/2 ≡ ap-1 ≡ 1(mod p),矛盾,故g不是生成元

5.证明命题11.4。

证:

​ 1.因为a, b ∈ Z 且不被 p 整除,当a为QR或QNR时,因为a ≡ b(mod p),所以b一定为QR或QNR,则由勒让德符号的定义易得(a/p) = (b/p) = ±1

​ 2.当a为QR或QNR时,由1.的结论可得(a/p) = (b/p) = ±1,又由命题11.3得结论1可得(a/p) * (b/p) = ±1= (ab/p);当a,b其中一个为QR,一个为QNR时,(a/p) * (b/p) = -1 = (ab/p)

​ 3.当a为QR或QNR时,a2一定为QR,所以(a2/p) = 1

6.给出推论11.1的完整证明。

证:

​ 当p ≡ 1(mod 4)时,存在k∈Z使得p = 4k+1,根据欧拉准则,有

​ (-1/p) ≡ (-1)(p-1)/2 ≡ (-1)(4k+1-1)/2 ≡ 1(mod p)

​ 当p ≡ -1(mod 4)时,存在k∈Z使得p = 4k+3,根据欧拉准则,有

​ (-1/p) ≡ (-1)(p-1)/2 ≡ (-1)(4k+3-1)/2 ≡ (-1)(mod p)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值