图像处理算法系列 第三章 图像模糊处理 (平滑处理)

本章主要讲图像处理中的模糊处理部分

英文叫做blur, 也叫做smootiing,  中文中叫做模糊或者平滑。

用过photoshop的人都应该知道,滤镜里面就有模糊这个选项,我们现在看看它是怎么实现的。

一含义

   模糊(平滑)是一种常用的图片处理方式,它的作用可以用来降低噪声,还有其他用途

   看一下opencv 里面的公式

               g(i,j) = \sum_{k,l} f(i+k, j+l) h(k,l)

     g(i,j)是目标坐标的像素值, f(i+k,j+l)是k,l这些地方的像素值, h(k,l)是 kernel,  我不知道怎么去准确翻译它的意义,它是过滤器的系数。 

    简单的按照我的思路去理解,就是一个权值,模糊的含义是将所有的像素按照一定的权值进行运算,得到一个比较均衡的结果。

二 类型

类型有很多种:
均值模糊(box blur) 高斯模糊(gaussian blur)  中值模糊(media blur) 二值模糊(bilateral blur)
本文只讲均值模糊和高斯模糊

三 算法

1 均值模糊
   均值模糊很简单就是周边所有的影响都是1,求平均值即可
K = \dfrac{1}{K_{width} \cdot K_{height}} \begin{bmatrix}    1 & 1 & 1 & ... & 1 \\    1 & 1 & 1 & ... & 1 \\    . & . & . & ... & 1 \\    . & . & . & ... & 1 \\    1 & 1 & 1 & ... & 1   \end{bmatrix}
2 高斯模糊
关于高斯模糊的算法,推荐这个文章
根据这个公式计算出系数即可。
上篇文章写得很详细,我就不班门弄斧了。

四均值模糊的代码和效果

     先放上均值模糊的代码
void boxblur(Mat input ,Mat &out, int x, int y)
{
	// accept only char type matrices
	CV_Assert(input.depth() != sizeof(uchar));

	out.create(input.size(),input.type());

	int nChannels = input.channels();
	int nRows = input.rows;
	int nCols = input.cols;

	int size = x * y;
	float kernel = 1.0/size;

	int i,j;
	uchar* p;
	uchar* q;
	uchar R,G,B;

	for( i = x; i < nRows - x; ++i)
	{
		q = out.ptr<uchar>(i);
		for ( j = y; j < nCols - y; ++j)
		{
			float sumR = 0;
			float sumG = 0;
			float sumB = 0;
			for (int k =0; k<x;k++)
			{
				p = input.ptr<uchar>(i-x+k);
				for(int l = 0; l < y;l++)
				{
					sumB += input.at<uchar>(i - x + k,(j + l - y)*nChannels) * kernel;//p[(l + j -y)*nChannels ] * kernel;
					sumG += input.at<uchar>(i - x + k,(j + l - y)*nChannels + 1) * kernel;//p[(l + j -y)*nChannels + 1] * kernel;
					sumR += input.at<uchar>(i - x + k,(j + l - y)*nChannels + 2) * kernel;//p[(l + j -y)*nChannels + 2] * kernel;
				}
			}
			q[j*nChannels] = sumB;
			q[j*nChannels+1] = sumG;
			q[j*nChannels+2] = sumR;
		}
	}


}

红色部分是我想直接用at,而不用指针,但是效率低的厉害。


下图是用指针的相差了20倍。。。可见指针虽然万恶,但是确实是个好东西。



由于size(4,4)图太小看不清, 实际用的是8
原始 opencv 本文


五高斯模糊的代码和效果

代码如下:

void gaussblur(Mat input ,Mat &out, int x, int y)
{
	float sigma = 1.5;
	Mat kernel;
	float pi = 3.1415926;

	kernel.create(x ,y ,CV_32F);

	float mx = x/2.0;
	float my = y/2.0;

       //这里有问题,后面做修正。
	for (int i =0; i< x;i++)
	{
		for (int j =0; j<y;j++)
		{
			kernel.at<float>(i,j) = exp(-1 * ((i - mx) * (i - mx) +(j - my) * (j-my) )/( 2 * sigma * sigma))/(2 * pi * sigma *sigma) ;
		}
	}


    int nChannels = input.channels();
	int nRows = input.rows;
	int nCols = input.cols;

	out.create(input.size(),input.type());
    uchar* p;
	uchar* q;
	float* s;

	for(int  i = x; i < nRows - x; ++i)
	{
		q = out.ptr<uchar>(i);
		for (int j = y; j < nCols - y; ++j)
		{
			float sumR = 0;
			float sumG = 0;
			float sumB = 0;
			for (int k =0; k<x;k++)
			{
				p = input.ptr<uchar>(i-x+k);
				s = kernel.ptr<float>(k); 
				for(int l = 0; l < y;l++)
				{
					sumB += p[(l + j -y)*nChannels ] * s[l];//input.at<uchar>(i - x + k,(j + l - y)*nChannels) * kernel;//
					sumG += p[(l + j -y)*nChannels + 1] *s[l];//input.at<uchar>(i - x + k,(j + l - y)*nChannels + 1) * kernel;//
					sumR += p[(l + j -y)*nChannels + 2] * s[l];//input.at<uchar>(i - x + k,(j + l - y)*nChannels + 2) * kernel;
				}
			}
			q[j*nChannels] = sumB;
			q[j*nChannels+1] = sumG;
			q[j*nChannels+2] = sumR;
		}
	}

	
}

效率如下:

效果图如下:
本文没有考虑边界的情况,所以都是灰色的,可以考虑一下如何处理边界。
原始 opencv 本文

上面代码有两处问题:
第一是在size比较小的时候,这些点的概率之和不等于1,会导致图片出问题。修正如下:

	float sum = 0;
	for (int i =0; i< x;i++)
	{
		for (int j =0; j<y;j++)
		{
			sum+= kernel.at<float>(i,j) = exp(-1 * ((i - mx) * (i - mx) +(j - my) * (j-my) )/( 2 * sigma * sigma))/(2 * pi * sigma *sigma) ;
		}
	}
	for (int i =0; i< x;i++)
	{
		for (int j =0; j<y;j++)
		{
			kernel.at<float>(i,j) = kernel.at<float>(i,j)/ sum ;
		}
	}


第二个问题是本文中sigma 是个固定值,实际上它是个可变值,具体怎么计算,我没有搞清楚,可以查看opencv的源代码,下面文章有参考价值

更新一下参考opencv里面的可以这样计算
sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8 .
修改程序之后发现和原始的高斯函数基本一致,希望广大朋友们多多评论,本人水平有限,很多地方有纰漏,希望能够共同提高。
发布了49 篇原创文章 · 获赞 11 · 访问量 7万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览