干货 | 知识图谱的技术与应用

作者 | 李文哲,人工智能、知识图谱领域专家导读:从一开始的Google搜索,到现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。它在技术领域的热度也在逐年上升。 本文以通俗易懂的方式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的...

2018-06-19 13:30:04

阅读数:58

评论数:0

分析时序数据的三步骤:使数据平稳、时序模型、评估

作者:Chris St. Jeor & Sean Ankenbruck,Zencos贪心科技编译时间序列预测是一个易于使用,成本较低的方案,它可以提供强大的解决问题能力。这篇文章将介绍建立一个质量模型的三个基本步骤。这篇文章将围绕如何构建一个时间序列模型,并将列举三个基本步...

2018-06-13 15:18:15

阅读数:205

评论数:0

深入浅出Meta Learning - 让机器学会如何去学习

主要看点这篇文章力求将我们从那些对AI空洞的幻想以及抽象的预测中带回到这片领域现在的真实情景中:在这里我们将分享这片领域的辉煌之处, 探讨其局限性, 并分析我们离鲁棒的多任务智能还有多远。Meta学习的初衷十分令人着迷:不仅仅构建能够学习的机器, 更重要的是让它学会如何去学习。这也就意味着Meta...

2018-06-01 12:44:13

阅读数:255

评论数:0

张量(Tensor)的技术以及它在不同场景中的应用

摘要本文主要介绍张量(Tensor)相关技术以及张量在数据恢复(missing data)、推荐中的应用。在文章的最后,简单介绍怎么通过ADMM算法吧把张量应用在大规模数据上。文章的内容来自于葛瀚骋博士、现任美国亚马逊资深科学家。我们现在所处的时代是一个信息爆炸的时代,许多现代的信息系统,比如物联...

2018-05-29 10:57:52

阅读数:243

评论数:0

AI新手必看:如何区分参数和超参数

相信所有人刚开始应用机器学习时,都会被两个术语混淆。计算机学科里有太多的术语,而且许多术语的使用并不一致。哪怕是相同的术语,不同学科的人理解一定有所不同。比如说:“模型参数(model parameter)”和“模型超参数(model Hyperparameter)”。对于初学者来说,这些没有明确...

2018-05-28 15:44:18

阅读数:215

评论数:0

深入浅出Meta Learning - 让机器学会如何去学习

主要看点这篇文章力求将我们从那些对AI空洞的幻想以及抽象的预测中带回到这片领域现在的真实情景中:在这里我们将分享这片领域的辉煌之处, 探讨其局限性, 并分析我们离鲁棒的多任务智能还有多远。Meta学习的初衷十分令人着迷:不仅仅构建能够学习的机器, 更重要的是让它学会如何去学习。这也就意味着Meta...

2018-05-21 11:41:57

阅读数:1068

评论数:0

亚马逊攻城狮出来讲AI啦!

张量(Tensor) 作为学术界和工业界一种常用的机器学习模型,在社交网络、推荐系统、时序分析等领域都有着极为广泛的应用。然而,对于机器学习初学者来说,张量,又是一个非常非常难以理解的概念。它到底是数值?数组?向量?函数?矩阵运算?向量运算?...好像都有点沾边,但好像又都不是。这一次我们邀请到了...

2018-05-20 16:22:25

阅读数:23

评论数:0

转型AI工程师:一起来听听AI 开发者的一天

“这是一个典型 AI 星期天的叙述,我决定使用一些已经可用的示例代码和来自康奈尔电影数据库的数据基于聊天机器人建立一个序列(seq2seq)模型。”From Titash Neogi, kontikilabs, 首席架构师和企业家1简介作为Kontiki实验室的首席设计师,我有两个角色:第一个是作...

2018-05-18 10:14:44

阅读数:30

评论数:0

用Encoder-Decoder模型自动生成文本摘要

出品:贪心科技(公众号:贪心科技)作者:Jason Brownlee前言文本摘要是自然语言处理中的一个问题,即要为源文档创建一篇简短、准确、流畅的摘要。当针对机器翻译开发的Encoder-Decoder循环神经网络结构应用于文本摘要问题时,它也已经被证明是有效的。在Keras深度学习库中应用这种体...

2018-05-17 11:29:43

阅读数:427

评论数:0

深度自编码器在推荐中的应用

出品:贪心科技(公众号:贪心科技)作者:Artem Oppermann前言协同过滤是推荐系统通过收集来自许多其他用户的品味或偏好来预测某个特定用户的兴趣所使用的一种方法。协同过滤技术的基本假设是,如果用户A与B在某件事上有相同的品味或意见,那么A就更有可能在不同的问题上得出与B相同的意见。通过本文...

2018-05-16 10:05:39

阅读数:53

评论数:0

基于XGBoost 的机器学习可解释性

出品:贪心科技(公众号:贪心科技)作者:Scott Lundberg前言本篇讲述了机器学习模型解释不当的危害和正确解读的价值。如果你发现ensemble tree 算法(比如梯度提升机器,或者随机森算法)的鲁棒精度很有意思,但同时还想解读他们,我希望本文章能够提供有用的信息。设想一下,我们的任务是...

2018-05-15 09:54:11

阅读数:207

评论数:0

教你如何用聚类方法分析加密货币市场

出品:贪心科技(公众号:贪心科技)作者:Sebastian quintero前言作者是Radicle团队首席数据科学家,致力于通过数据分析方法对于加密货币市场进行分析,判断潜在的货币规律以及不为人知的货币间相关性,投资有风险,分析仅仅用于研究,无关投资趋势。为了更好地理解货币的相关性,作者部署了一...

2018-05-14 11:14:34

阅读数:61

评论数:0

如何开发一个词语级的神经语言模型并使用它生成文本?

出品:贪心科技(公众号:贪心科技)作者:Artem Oppermann(贪心科技编译)字数:2300阅读时长:5分钟前言在本教程中,您将发现如何使用 Python 中的深层学习来开发统计语言模型。神经网络模型是开发统计语言模型的首选方法,因为这种模型可以使用分布表示的形式,在该形式中具有相似含义的...

2018-05-13 12:20:10

阅读数:168

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭