数论基础————————(总结全部)

一、整数和约数

  • 整数: 若a%b==0,则称a能被b整除或b能整除a,记作b | a.
  • 约数
  1. 约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数
2. 试除法求所有约数
vector<int> get_divisors(int x)
{
    vector<int> res;
    for (int i = 1; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res.push_back(i);
            if (i != x / i) res.push_back(x / i);
        }
    sort(res.begin(), res.end());
    return res;
}

3.约数个数和约数之和

如果 N = p1^c1 * p2^c2 * … *pk^ck
约数个数: (c1 + 1) * (c2 + 1) * … * (ck + 1)
约数之和: (p1^0 + p1^1 + … + p1^c1) * … * (pk^0 + pk^1 + … + pk^ck)

二、最大公约数和最小公倍数

1.最大公约数定义:a,b的公共的约数中最大的约数,记作 gcd(a,b)。

  • 辗转相除法(欧几里德法)用来求解最大公约数
 int gcd(int a, int b){
 //递归版
	return b == 0 ? a : gcd(b, a%b);
}

//怎么将递归写成循环 
int gcd (int a, int b){
    if(a < b) swap(a, b);
    while( b != 0 ){ //或者写成!b
        int tmp = a;
        a = b;
        b = temp % b; //相当于递归中的a % b
    }
    return a;
}
  1. 最小公约数定义:a, b的所有公共的倍数中最小的公倍数,记作lcm(a,b),
    计算方式:
    在这里插入图片描述

三、素数

定义:素数的定义是,除了1和自己本身没有其他约数的数字。
注: 1既不是素数也不是合数,最小的素数是2

  • 素数的判断;
  1. 暴力枚举:
  • 原理: 循环遍历i从2到 n \sqrt{n} n 如果有n/i==0 则可判断不是素数
bool isprime(int n){
	for(int i = 2; i * i <= n; i ++){
		if(n % i == 0) return false;		
	}
	return true;
}

  1. 埃氏筛
  • 原理: 一个合数必然可以表示一个质数和另一个数相乘。对于一个素数p,那么p的倍数2p,3p,…kp,…必然都是合数
/*
	定义数组:isprime[i],表示数组i是否时素数
	
*/
const int maxn = 1e5 + 100;
int m;
bool isprime[maxn];
int p[maxn];
void sieze(int n)
{
    m = 0; memset(isprime, true, sizeof(isprime));
    for(int i = 2; i <= n; i ++){
        if(isprime[i]){///表明 i 就是素数
        	p[++ m] = i;
            for(int j = 2 * i; j <= n; j += i){
                isprime[j] = false;
            }
        }
    }
}

  • 不足: 仔细分析可以看出,这种方法筛出n以内的所有素数还是有不足之处的。原因在于每个合数会被其每一个质因子筛到一次。因此就有了接下来的线性筛。
  1. 线性筛
const int maxn = 1e5 + 100;
int m;
bool v[maxn];
int p[maxn];
void sieze(int n)
{
    m = 0; memset(v, false, sizeof v);
    for(int i = 2; i <= n; i ++){
        if(!v[i]) {
            p[++ m] = i;
        }
        for(int j = 1; j <= m && i * p[j] <= n; j ++){
            v[i * p[j]] = true;
            if(i % p[j] == 0) break;//这条语句很关键
        }
    }
}

四、快速幂

  • 问题计算a^n
  • 显然暴力O(n)不适用了
  • 快速幂原理
    在这里插入图片描述
    因此我们可以设置一个res(初始为1)和一个base(初始值为a),也即a^{0},在对n进行二进制拆分过程中,当第i位(从右往左第i位)为1时,则将res乘上base,并且base每次都乘上自己
int ksm(int a, int n, int mod)
{
	int res = 1;
	while(n){
		if(n & 1) res = res * a % mod; //二进制拆分n第i位(从右往左)为1
		a = a * a % mod;
		n >>= 1;
	}
	 return res;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值