排序:
默认
按更新时间
按访问量

Python之numpy基本指令

  # -*- coding: utf-8 -*- 多加练习才是真 import numpy as np from numpy import newaxis from numpy import pi import matplotlib.pyplot as plt from numpy impor...

2017-12-07 20:44:25

阅读数:764

评论数:0

Python 编程进阶经典算法逻辑编程

Python 编程进阶经典算法数列

2017-10-29 15:49:35

阅读数:1646

评论数:0

Python入门基础

help('math') #介绍math函数 dir(x) #x都有哪些操作方法 type(x) #x的类型   a = input().split() #空格区别输入,生成list b = [int(x) for x in a] #list中每个值转换为整型     sequen...

2017-08-17 11:36:14

阅读数:137

评论数:0

常用的矩阵数据处理命令(Matlab)

%%%%%%%%%%%%%

2017-06-25 10:29:35

阅读数:1021

评论数:0

ANOVA,T检验,秩和检验

ANOVA要求:多组样本比较,方差齐,正态性。不齐可以用Tamhane's T2。 T检验要求:方差齐,正态性。不齐用矫正T检验。 秩和检验:非参数检验。不满足上面做这个。...

2018-11-04 14:56:17

阅读数:43

评论数:0

JAVA

一个源文件只能有一个public类,可以有多个非public类 import java.ccc.bbb #ccc包名,bbb类名,ccc和public的类名应该一样 import java.ccc.* 类中预先定义的变量x后面可以用this.x来表示这个变量   IntelliJ IDE...

2018-07-28 12:35:29

阅读数:25

评论数:0

linux 基本操作指令

cd ~/XXX  cd X 定位到指定目录 cd .. 返回上一级目录 cd ../.. 返回上两级目录 ls 显示当前目录下所有文件 python -version 显示软件的版本 将软件拖入终端 显示软件的路径 open X 打开指定文件 which python 显示pyt...

2018-07-28 12:05:32

阅读数:30

评论数:0

基于SVD物品推荐

原文: https://www.cnblogs.com/lzllovesyl/p/5243370.html     # -*- coding: utf-8 -*- """ Created on Wed Jul 25 15:41:48...

2018-07-25 16:02:58

阅读数:91

评论数:0

机器学习方法

回归:线性回归,岭回归(损失函数加L2正则化),Lasso回归(损失函数加L1正则化),多项式回归, 分类:SVM,BP神经网络,logistic回归,随机森林,决策树(ID3,C4.5,CART),K-NN,LDA,FM,FFM 识别:RNN,CNN 聚类:K-means, EM 特征提...

2018-07-25 15:57:52

阅读数:44

评论数:0

线性回归、岭回归(Ridge)与Lasso回归

y = ax+b+ ε y1 = ax+b 其中y为样本实际值,y1为预测值。 线性回归、岭回归(Ridge)与Lasso回归拟合出来为y=ax+b. 区别:损失函数:线性回归为误差平方和,岭回归为误差平方和加L2正则项(可以使得每个系数都相对更小从而减少过拟合),Lasso回归为误差平方...

2018-07-24 21:21:44

阅读数:191

评论数:0

决策树和随机森林

决策树: ID3 (Iterative Dichotomiser 3): 基于信息增益(Info Gain),即为属性划分前后信息差(entropy 前-后),对应于python的参数"entropy",偏向取值较多的特征。 CART (Classifica...

2018-07-21 13:25:35

阅读数:46

评论数:0

NLP

one hot code: 独热码,有多少个状态就有多少个向量。因为假如某个特征有三种状态,由于特征值会影响训练,因此用0,1,2来代表三种状态是不合适的。     内容排名推荐: Feed流推荐,相关推荐,TopN推荐,个性化推送 https://blog.csdn.net/qq_...

2018-07-20 16:16:17

阅读数:83

评论数:0

神经网络

ReLU对于初始计算出激活为0或者负数,则此节点权重永远无法更新。 θ1和θ2如果初始值相同,则他们的更新也会完全同步因此会产生冗余,因此可以考虑用随机   数据增强:翻转,旋转,变颜色,缩放。 两类样本数量不匹配时数据增强:过采样,SMOTE(对样本少的类扩充为n倍并...

2018-07-17 19:18:35

阅读数:28

评论数:0

Anaconda 深度学习包配置

pip install --upgrade --ignore-installed tensorflow #安装tensorflow pip install --ignore-installed --upgrade tensorflow-gpu #安装tensorflow-GPU,还需下载SDK1...

2018-07-17 13:11:00

阅读数:83

评论数:0

STL容器

1. vector可以随机访问迭代器,在尾部添加快,中间添加慢,根据下标随机访问某个元素时间为常数,支持所有STL算法的操作。vector(); //无参构造函数,容器初始化为空vector(int n); //将容器初始化成有n各元素vector(int n, const T &...

2018-06-14 15:06:07

阅读数:24

评论数:0

查准率、召回率、敏感性、特异性和F1-score的计算及Matlab实现

查准率(Precision):所有诊断为患病(1)样本中实际为患病的比率。召回率(Recall):所有患病样本中被发现并诊断为患病的比率。查准率 = TP/(TP+FP)召回率 = TP/P = TP/(TP+FN)敏感性 = TP/P = TP/(TP+FN)特异性 = TN/N = TN/(T...

2018-04-28 11:31:01

阅读数:661

评论数:0

对分类结果的置换检验及Matlab实现

对分类结果的置换检验及Matlab实现

2018-04-28 10:48:17

阅读数:296

评论数:0

分数求和 C++

描述输入n个分数并对他们求和,用约分之后的最简形式表示。比如:q/p = x1/y1 + x2/y2 +....+ xn/yn,q/p要求是归约之后的形式。如:5/6已经是最简形式,3/6需要规约为1/2, 3/1需要规约成3,10/3就是最简形式。PS:分子和分母都没有为0的情况,也没有出现负数...

2018-04-05 19:43:39

阅读数:259

评论数:0

C++基础

环境VS1. 数据类型int 4字节char 1字节bool 1字节float 4字节 保留7位 指数38位double 8字节 15位long double 8字节 保留15位  指数38位short int or short 2字节long int or long 4字节unsigned in...

2018-04-03 20:54:24

阅读数:73

评论数:0

C++实现 排序算法

1. 冒泡排序 #include <iostream>using namespace std; int main(){   int n,a[1000];//个数及数组   cin >> n;   for (in...

2018-04-01 21:40:21

阅读数:30

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭