- 基础部分
- 问题
- 物品冷启动:新加入系统的物品,因缺少行为数据而无法被扩散推荐,在注重时效性的场景,比如新闻类应用;
- 解决冷启动:
方法1:基于内容的推荐算法,基于内容本身的信息,物品相似U1U2,根据内容属性:标题、描述、分类、标签、作者等映射成内容向量,然后余弦相似度计算;
方法2:基于协同过滤的推荐算法,使用群体行为数据,如抖音的多级流量池算法(赛马机制),先根据标题、简介、封面、粉丝数等进行评级,然后依旧通过个性化内容标签分配,进入各级流量池,然后根据播放率、点赞率、转发、评论等晋升流量池,如不达标则不晋升流量池,推荐量停止,达到最高级流量池,冷启动结束,协同过滤可以很好进行推荐;