推荐系统

在面临新物品冷启动问题时,如新闻类应用,可以采用基于内容的推荐算法,利用物品的标题、描述等信息计算内容向量并进行相似度匹配。此外,协同过滤也是有效手段,例如抖音的多级流量池机制,通过用户行为数据晋升流量池,最终实现冷启动推荐。这两种方法结合能有效缓解新物品缺乏行为数据的困境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 基础部分
  2. 问题
  • 物品冷启动:新加入系统的物品,因缺少行为数据而无法被扩散推荐,在注重时效性的场景,比如新闻类应用;
  • 解决冷启动:

           方法1:基于内容的推荐算法,基于内容本身的信息,物品相似U1U2,根据内容属性:标题、描述、分类、标签、作者等映射成内容向量,然后余弦相似度计算;

           方法2:基于协同过滤的推荐算法,使用群体行为数据,如抖音的多级流量池算法(赛马机制),先根据标题、简介、封面、粉丝数等进行评级,然后依旧通过个性化内容标签分配,进入各级流量池,然后根据播放率、点赞率、转发、评论等晋升流量池,如不达标则不晋升流量池,推荐量停止,达到最高级流量池,冷启动结束,协同过滤可以很好进行推荐;

  •  

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值