茅坤宝骏氹的博客

写博客,纯粹自娱。转载文章来源网络,转载链接不一定是原文,如有侵权请联系删除...

排序:
默认
按更新时间
按访问量
RSS订阅

如何轻松愉快的理解条件随机场(CRF)

转载自  如何轻松愉快的理解条件随机场(CRF) 如何轻松愉快的理解条件随机场(CRF)? 理解条件随机场最好的办法就是用一个现实的例子来说明它。 但是目前中文的条件随机场文章鲜有这样干的,可能写文章的人都是大牛,不屑于举例子吧。 于是乎,我翻译了这篇文章。希望对其他伙伴有所帮助。 原文在...

2018-10-23 12:52:04

阅读数 108

评论数 0

完全图解RNN、RNN变体、Seq2Seq、Attention机制

转载自 完全图解RNN、RNN变体、Seq2Seq、Attention机制 完全图解RNN、RNN变体、Seq2Seq、Attention 机制 本文首发于知乎专栏“ai insight”! 本文主要是利用图片的形式,详细地介绍了经典的RNN、RNN几个重要变体,以及Seq2Seq模型、A...

2018-10-23 12:51:42

阅读数 126

评论数 0

Attentive Sequence to Sequence Networks

转载自  Attentive Sequence to Sequence Networks Attentive Sequence to Sequence Networks 1、Encoder-Decoder 框架 首先我们模型的整体框图如下: Encoder-Decoder 框架可以这么...

2018-10-22 19:37:18

阅读数 37

评论数 0

NLP Coursera By Michael Collins - Week1

转载自   NLP Coursera By Michael Collins - Week1 NLP Coursera By Michael Collins - Week1 构建模型框架 - Markov Process 毕竟是机器学习嘛,所以第一步,先要把实际问题转化成数学模型。   在...

2018-10-22 19:36:41

阅读数 97

评论数 0

深入浅出讲解语言模型

转载自  深入浅出讲解语言模型 深入浅出讲解语言模型 1、什么是语言模型呢? 简单地说,语言模型就是用来计算一个句子的概率的模型,也就是判断一句话是否是人话的概率? 那么如何计算一个句子的概率呢?给定句子(词语序列) 它的概率可以表示为: 可是这样的方法存在两个致命的缺陷: ...

2018-10-22 19:36:13

阅读数 39

评论数 0

seq2seq中的beam search算法过程

转载自  seq2seq中的beam search算法过程 首先说明在sequence2sequence模型中,beam search的方法只用在测试的情况,因为在训练过程中,每一个decoder的输出是有正确答案的,也就不需要beam search去加大输出的准确率。 假设现在我们用机器翻译...

2018-10-22 19:35:34

阅读数 155

评论数 0

自然语言处理中CNN模型几种常见的Max Pooling操作

转载自   自然语言处理中CNN模型几种常见的Max Pooling操作 自然语言处理中CNN模型几种常见的Max Pooling操作 CNN是目前自然语言处理中和RNN并驾齐驱的两种最常见的深度学习模型。 图1展示了在NLP任务中使用CNN模型的典型网络结构。 一般而言,输入的字或者词用...

2018-10-22 19:35:07

阅读数 110

评论数 0

自然语言处理中的Attention Model:是什么以及为什么[二]

转载自  自然语言处理中的Attention Model:是什么以及为什么[二] 自然语言处理中的Attention Model:是什么以及为什么[二] 1、Attention Model 图一见下: 图1中展示的Encoder-Decoder模型是没有体现出“注意力模型”的,所以可以...

2018-10-22 19:34:34

阅读数 44

评论数 0

自然语言处理中的Attention Model:是什么以及为什么[一]

转载自  自然语言处理中的Attention Model:是什么以及为什么[一] 自然语言处理中的Attention Model:是什么以及为什么[一] 1、前言 要是关注深度学习在自然语言处理方面的研究进展,我相信你一定听说过Attention Model(后文有时会简称AM模型)这个词。...

2018-10-22 19:34:02

阅读数 42

评论数 0

训练集样本不平衡问题对CNN的影响

转载自  训练集样本不平衡问题对CNN的影响 训练集样本不平衡问题对CNN的影响 本文首发于知乎专栏“ai insight”! 卷积神经网络(CNN)可以说是目前处理图像最有力的工具了。 而在机器学习分类问题中,样本不平衡又是一个经常遇到的问题。最近在使用CNN进行图片分类时,发现CNN对...

2018-10-22 19:33:37

阅读数 70

评论数 0

自然语言处理的十个发展趋势

转载自  哈工大刘挺教授:自然语言处理的十个发展趋势 近日,由中国人工智能学会、阿里巴巴集团 & 蚂蚁金服主办,CSDN、中国科学院自动化研究所承办的第三届中国人工智能大会(CCAI 2017)在杭州国际会议中心盛大开幕。 本次大会的第一场分论坛讨论是关于语言智能领域的...

2018-10-22 19:33:09

阅读数 60

评论数 0

通俗理解维特比算法

转载自  通俗理解维特比算法 本文假定读者有一定的隐马模型基础!或者大家可以参考这两篇文章。 隐马尔科夫模型-基本模型与三个基本问题和隐马尔科夫模型-前向算法 维特比算法说白了就是动态规划实现最短路径,只要知道“动态规划可以降低复杂度”这一点就能轻松理解维特比算法 维特比算法之所以重要,是...

2018-10-22 19:32:34

阅读数 175

评论数 0

依存句法分析的任务以及形式化定义

转载自  依存句法分析的任务以及形式化定义 依存句法分析的任务以及形式化定义 1、依存句法分析的形式化定义 在依存句法中,共同的基本假设是:句法结构本质上包含词和词对之间的关系。这种关系就是依存关系(dependency relations)。其中一个依存关系连接两个词,一个是核心词(hea...

2018-10-21 11:57:38

阅读数 230

评论数 0

一个非常好的依存句法可视化工具

转载自  一个非常好的依存句法可视化工具 一个非常好的依存句法可视化工具 在依存句法研究中,常见的CONLL格式的句法树库,一眼看上去就不是太明白整棵树的结构。 这里分享推荐一个南京大学nlp实验室制作的一个依存句法可视化工具,效果如图: 当我们的CONLL格式数据如下: 它对应的树...

2018-10-21 11:57:10

阅读数 597

评论数 0

机器学习中向量化编程总结记录

转载自  机器学习中向量化编程总结记录 向量化编程总结记录 很多时候,我们在实现算法的时候,总会碰到累和的伪代码: 比如下面这个: 为了简单我这里只重复5次,但是原理是一样的。 很显然我们要得到这个结果,非常简单,比如下面的这段python代码: 那么我们有没有更好的办法呢?有...

2018-10-21 11:56:49

阅读数 59

评论数 0

隐马尔科夫模型-前向算法

转载自  隐马尔科夫模型-前向算法 隐马尔科夫模型-前向算法 在该篇文章中讲了隐马尔科夫模型(HMM)一基本模型与三个基本问题 隐马尔科夫模型-基本模型与三个基本问题,这篇文章总结一下隐马尔科夫链(HMM)中的前向与后向算法,首先给出这俩个算法是为了解决HMM的第一个基本问题。 先回忆一下第...

2018-10-21 11:55:54

阅读数 37

评论数 0

隐马尔科夫模型-基本模型与三个基本问题

转载自  隐马尔科夫模型-基本模型与三个基本问题 隐马尔科夫模型-基本模型与三个基本问题 这次学习会讲了隐马尔科夫链,这是一个特别常见的模型,在自然语言处理中的应用也非常多。 常见的应用比如分词,词性标注,命名实体识别等问题序列标注问题均可使用隐马尔科夫模型. 下面,我根据自己的理解举例进...

2018-10-21 11:54:56

阅读数 30

评论数 0

句法分析(syntactic parsing)在NLP领域的应用是怎样的

转载自   句法分析(syntactic parsing)在NLP领域的应用是怎样的 句法分析(syntactic parsing)在NLP领域的应用是怎样的? 文章整理自郭江师兄问题回答(被收录于知乎编辑推荐)!已取得师兄授权!@jiangfeng     原问题如下: opinion...

2018-10-21 11:54:16

阅读数 261

评论数 0

通俗理解决策树算法中信息增益的

转载自   通俗理解决策树算法中信息增益的 通俗理解决策树算法中的信息增益 在决策树算法的学习过程中,信息增益是特征选择的一个重要指标,它定义为一个特征能够为分类系统带来多少信息,带来的信息越多,说明该特征越重要,相应的信息增益也就越大。 1、概念 我们前面说了,信息熵是代表随机变量的复杂...

2018-10-21 11:53:48

阅读数 61

评论数 0

通俗理解条件熵

转载自  通俗理解条件熵 通俗理解条件熵 前面我们总结了信息熵的概念通俗理解信息熵,这次我们来理解一下条件熵。 1、信息熵以及引出条件熵 我们首先知道信息熵是考虑该随机变量的所有可能取值,即所有可能发生事件所带来的信息量的期望。公式如下: 我们的条件熵的定义是:定义为X给定条件下,Y...

2018-10-21 11:53:27

阅读数 64

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭