二分查找中的死循环

        二分算法是我们经常会用到的一个算法。它是分治法的一个应用。不过,虽然他写起来貌似很简单,但是却很容易写错。下面我们讨论一下二分的死循环问题。(这里讨论的是整数的二分问题,浮点数的二分不容易死循环)

1.查找的元素确定,值唯一或者不存在

        这种情况等下,我们的流程分为三个分支:(相等、小于、大于)。这类不容易死循环,代码如下:

if ( data[mid] == key )
    return mid;
if ( data[mid] > key )
    r = mid-1;
else l = mid+1;

2.被查元素不确定,值可能有多个,找到第一个或者最后一个

        这是最容易出现死循环的情况,也是本文讨论的核心。这种情况下,流程分成两个分支,我们分两种情况讨论:

        a.取第一个小于key的元素:

if ( data[mid] >= key )
    r = mid-1;
else l = mid;

        我们看式子 mid = (l+r)/2

        如果(l+r)为奇数,则

            mid = (l+r)/2 = (l+r-1)/2 导出 2*mid = (l+r-1)/2*2 = l+r-1

            这时,若 mid = l 则“else l = mid;”这句代码就会就会进入死循环。

            所以这时使用 mid = (l+r+1)/2 代替 mid = (l+r+1)/2 就不会死循环了。

        如果(l+r+1)为偶数,则

            mid = (l+r+1)/2 = (l+r)/2 导出 2*mid = (l+r)/2*2 = l+r 不会出现问题。

            (这时使用 mid = (l+r)/2 也不会死循环)

        综上,这种情况下使用 mid = (l+r+1)/2 就不会死循环了,不过这不是通用式子,看b情况。 

int bs( int l, int r, int key )
{
	while ( l < r ) {
		int mid = (l+r+1)/2;
		if ( data[mid] >= key )
			r = mid-1;
		else l = mid;
	}
        return l;
}

        b.取第一个大于key的元素:

if ( data[mid] <= key )
    l = mid+1;
else r = mid;

        我们看式子 mid = (l+r+1)/2

        如果(l+r+1)为奇数,则

            mid = (l+r+1)/2 = 导出 2*mid = (l+r+1)/2*2 = l+r+1

            这时,若 mid = r 则“else r = mid;”这句代码就会就会进入死循环。

            所以这时要使用 mid = (l+r)/2 代替 mid = (l+r+1)/2 才不会死循环了。

        如果(l+r)为偶数,则

            mid = (l+r)/2 导出 2*mid = (l+r)/2*2 = l+r不会出现问题。

            (这时使用 mid = (l+r+1)/2 也不会死循环)

        综上,这种情况下使用 mid = (l+r)/2 就不会死循环了。 

int bs( int l, int r, int key )
{
	while ( l < r ) {
		int mid = (l+r)/2;
		if ( data[mid] <= key )
			l = mid+1;
		else r = mid;
	}
        return r;
}

        c.综合a、b得到结论取中值的计算方式与判断条件有关,下面加入一个小优化。

3.一步小优化,防止溢出

       这里使用 mid = l+(r-l)/2 代替 mid = (l+r)/2 以及 mid = l+(r-l+1)/2 代替 mid = (l+r+1)/2。这样可以防止l+r和l+r+1溢出。下面证明两者的等价性。

       a.l+r为奇数,则r-l为奇数,r-l+1为偶数

         mid = l+(r-l+1)/2 = l*2/2 + (r-l+1)/2 = (l+r+1)/2

         mid = l+(r-l)/2 = l*2/2 + (r-l-1)/2 = (r+l-1)/2 = (r+l)/2

       b.l+r为偶数,则r-l为偶数,r-l+1为奇数

         mid = l+(r-l+1)/2 = l*2/2 + (r-l)/2 =(l+r)/2 = (l+r+1)/2

         mid = l+(r-l)/2 = l*2/2 + (r-l)/2 = (l+r)/2

       c.综上所述上述替代成立。

发布了1244 篇原创文章 · 获赞 199 · 访问量 115万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览