matplotlib嵌套南海子图

这篇博客介绍了如何在matplotlib中优雅地嵌套绘制南海子图,解决了传统方法存在的图轴位置同步和比例问题。文章提供了一个简洁的新方案,通过调整图轴相对位置和缩放锚点,实现了南海子图与大陆图轴的完美融合,适用于多行多列的地图绘制。同时,文章提及了对南海图轴形状的定制方法,如创建五边形外框。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

matplotlib嵌套南海子图

二维可视化的最高境界是可以控制每一个像素的每一个通道。——我瞎说的

简介

目前大多数教程中用matplotlib在中国地图右下角嵌套南海子图主要方案是通过fig.add_axes方法,在指定位置绘制指定宽高的新图轴。这种方案可行但存在两个问题:

  1. 大陆图轴和南海图轴在代码逻辑上是独立的:一旦使用会挤压图轴的操作如fig.colorbar,大陆图轴在画布上的位置大小发生改变,但在此之前绘制的南海图轴不会跟随移动。这导致该方案下南海图轴需要在最后绘制,一行一列的图还勉强不算太麻烦,但若是要在一张图上画上个几行几列,必须先for循环绘制所有大陆图轴,再绘制颜色图例、标题等等,最后再用先for循环绘制所有南海图轴,很不优雅。
  2. 由于地图投影问题,最终图轴的宽高不一定是创建图轴时所指定的宽高。这导致若不在绘制南海图轴前通过投影关系计算好比例,最终两个图轴的右下两条边界可能不会重合,很不优雅。

我琢磨出一种优雅的方法,可以优雅地解决这两个问题,核心方法为ax.inset_axes。结合cartopy需要matplotlib>=3.6.x

示例

举个简单例子:

import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import geopandas as gpd
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
from matplotlib.font_manager import FontProperties

shp_province = gpd.read_file('E:/map/province.shp')  # 省级边界
shp_10dash = gpd.read_file('E:/map/10dash.shp')  # 十段线
font = FontProperties(fname='C:\Windows\Fonts\simsun.ttc')
platecarree = ccrs.PlateCarree()
extent = (70, 135, 15, 55)  # 大陆图轴经纬度范围
extent_southsea = (107, 122, 0, 22)  # 南海图轴的经纬度范围
height_ratio_southsea = 0.4  # 南海图轴高度与大陆图轴高度的比例
ticks_lon = np.arange(75, 136, 5)  # 经度刻度
ticks_lat = np.arange(20, 51, 5)  # 纬度刻度
figsize = (10, 8)
lon_formatter = LongitudeFormatter(zero_direction_label=True)
lat_formatter = LatitudeFormatter()
# 读取待绘制数据
data = xr.lo
智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值