php教程--案例3

<?php

header("Content-type:text/html;charset=utf-8");
//定义变量
$name = '小明';
$score = 0;
$str = '';
//点击提交按钮,随机成绩和姓名
if($_POST['rand_score'])
{
    //姓名数组
    $array_name = array( '0'=>'小明','1'=>'小红','2'=>'小熊','3'=>'小娜','4'=>'小蛋','5'=>'小皮');
    //随机姓名
    $temp = rand(0,5);
    $name = $array_name[$temp];
    //随机成绩
    $score = rand(0,100);

}
//判断成绩是否输入为整数或者浮点数
if(is_int($score) || is_float($score))
{
    if($score >= 90 && $score <= 100)
    {
        $str = "A";
    }
    elseif($score >= 80 && $score < 90)
    {
        $str = "B";
    }
    elseif($score >= 70 && $score <80)
    {
        $str = "C";
    }
    elseif($score >= 60 && $score <70)
    {
        $str = "D";
    }
    elseif($score >= 0 && $score <60)
    {
        $str = "E";
    }
    else
    {
        $str = "输入学生成绩数值范围有误!";
    }
}

echo "<h2>学生成绩等级</h2>";
echo "<p>姓名:{$name}</p>";
echo "<p>分数: {$score}分</p>";
echo "<p>成绩等级:<strong>{$str}级</strong></p>";
echo "<hr>";
//提交按钮必须在form表单内,action处理页面本页负责
echo "<form method='post' action='".$_SERVER['PHP_SELF']."'>";
echo "<input type='submit' name='rand_score' value='随机成绩'>";
echo "</from>";

 

AI实战-加拿大的工业产品价格指数数据集分析预测实例(含4个源代码+18.20 MB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:4个代码,共38.64 KB;数据大小:1个文件共18.20 MB。 使用到的模块: numpy pandas os sklearn.model_selection.train_test_split tensorflow.keras.models.Sequential tensorflow.keras.layers.Dense sklearn.impute.KNNImputer sklearn.impute.IterativeImputer sklearn.linear_model.LinearRegression matplotlib.pyplot sklearn.datasets.make_blobs sklearn.cluster.DBSCAN sklearn.neighbors.LocalOutlierFactor sklearn.ensemble.IsolationForest sklearn.svm.OneClassSVM sklearn.preprocessing.MinMaxScaler sklearn.preprocessing.StandardScaler sklearn.preprocessing.MaxAbsScaler sklearn.preprocessing.RobustScaler sklearn.preprocessing.PowerTransformer sklearn.preprocessing.QuantileTransformer sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.LabelEncoder category_encoders seaborn sklearn.cluster.KMeans sklearn.metrics.silhouette_score sklearn.decomposition.PCA sklearn.datasets.load_iris scipy.cluster.hierarchy.linkage scipy.cluster.hierarchy.dendrogram sklearn.cluster.AgglomerativeClustering sklearn.mixture.GaussianMixture matplotlib warnings sklearn.metrics.mean_squared_error sklearn.metrics.r2_score plotly.express sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor catboost.CatBoostRegressor sklearn.metrics.mean_absolute_error sklearn.model_selection.RandomizedSearchCV statsmodels.tsa.arima.model.ARIMA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虾米大王

有你的支持,我会更有动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值