BSOJ2926 RQNOJ595 tyvj 1342 -- 【模拟试题】教主泡嫦娥 随机化+DP

想要看随机化的可以看看我的这篇文章

BSOJ2926 RQNOJ595 tyvj 1342 -- 【模拟试题】教主泡嫦娥
Description
【问题背景】
  2012年12月21日下午3点14分35秒,全世界各国的总统以及领导人都已经汇聚在中国的方舟上。
  但也有很多百姓平民想搭乘方舟,毕竟他们不想就这么离开世界,所以他们决定要么登上方舟,要么毁掉方舟。
  LHX教主听说了这件事之后,果断扔掉了手中的船票。在地球即将毁灭的那一霎那,教主自制了一个小型火箭,奔向了月球……
  教主登上月球之后才发现,他的女朋友忘记带到月球了,为此他哭了一个月。
  但细心的教主立马想起了小学学过的一篇课文,叫做《嫦娥奔月》,于是教主决定,让嫦娥做自己的新任女友。
【问题描述】
  教主拿出他最新研制的LHX(Let's be Happy Xixi*^__^*)卫星定位系统,轻松地定位到了广寒宫的位置。
  见到嫦娥之后,教主用温柔而犀利的目光瞬间迷倒了嫦娥,但嫦娥也想考验一下教主。
  嫦娥对教主说:“看到那边的环形山了么?你从上面那个环走一圈我就答应你~”
  教主用LHX卫星定位系统查看了环形山的地形,环形山上一共有N个可以识别的落脚点,以顺时针1~N编号。每个落脚点都有一个海拔,相邻的落脚点海拔不同(第1个和第N个相邻)。
  教主可以选择从任意一个落脚点开始,顺时针或者逆时针走,每次走到一个相邻的落脚点,并且最后回到这个落脚点。
  教主在任意时刻,都会有“上升”、“下降”两种状态的其中一种。
  当教主从第i个落脚点,走到第j个落脚点的时候(i和j相邻)
  j的海拔高于i的海拔:如果教主处于上升状态,教主需要耗费两段高度差的绝对值的体力;否则耗费高度差平方的体力。
  j的海拔低于i的海拔:如果教主处于下降状态,教主需要耗费两段高度差的绝对值的体力;否则耗费高度差平方的体力。
  当然,教主可以在到达一个落脚点的时候,选择切换自己的状态(上升→下降,下降→上升),每次切换需要耗费M点的体力。在起点的时候,教主可以自行选择状态并且不算切换状态,也就是说刚开始教主可以选择任意状态并且不耗费体力。
  教主希望花费最少的体力,让嫦娥成为自己的女朋友。
Input
  输入的第一行为两个正整数N与M,即落脚点的个数与切换状态所消耗的体力。
  接下来一行包含空格隔开的N个正整数,表示了每个落脚点的高度,题目保证了相邻落脚点高度不相同。
Output
  输出仅包含一个正整数,即教主走一圈所需消耗的最小体力值。
  注意:C++选手建议使用cout输出long long类型整数。
Sample Input
6 7
4 2 6 2 5 6
Sample Output
27
Hint
【样例解释】
  从第3个落脚点开始以下降状态向前走,并在第4个落脚点时切换为上升状态。这样共耗费4 +(7)+3+1+2^2+2^2+4=27点体力。
【数据范围】
  对于10%的数据,N ≤ 10;
  对于30%的数据,N ≤ 100,a[i] ≤ 1000;
  对于50%的数据,N ≤ 1000,a[i] ≤ 100000;
  对于100%的数据,N ≤ 10000,a[i] ≤ 1000000,M ≤ 1000000000;
可以很简单地看出化环为链,枚举起点的暴力DP方法,方程也是显而易见的,这里不多做赘述。
但是数据范围不允许这种O(n*n)的算法AC。
可以注意到,这个算法的缓慢之处在于枚举起点。
怎么加快这个“枚举”呢?
我请教了同期随机化大神,这个枚举可通过以下随机化方案解决:
先随机20个起点,对于每个随机的起点,进行多(30+)次优化,所谓优化,就是以这个起点为中心,左右随机其他的点,以这个“其他的点”来优化当前“圆心”,随着时间的推移,优化的范围逐渐减小。
具体代码是这样的:
      now=tp[i]+sin((double)(rand()%10000/10000))*T;
(其实就是斜边*正弦=直角边)
这里的T就是长度,T随着每一轮优化减小(T*=0.x)。
这样就能快速覆盖整个数列,并且准确度较高,速度较快地完成对起点的枚举。
代码如下。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<ctime>
using namespace std;
typedef long long ll;
inline ll read()
{
    ll bj=1ll;
    char ch=getchar();
    while(ch<'0'||ch>'9')
    {
        if(ch=='-')bj=-1ll;
        ch=getchar();
    }
    ll ret=0ll;
    while(ch>='0'&&ch<='9')ret=ret*10ll+ch-'0',ch=getchar();
    return ret*bj;
}
ll a[10001*2]={0},f[30001][2]={0},n,m,minn=1e100,b[30001]={0},cnt=0,tp[105]={0},note[100004]={0},now;
double T;
ll square(ll x){return x*x;}
ll DP(ll st)
{
    if(note[st])return note[st];
    cnt=0;
    for(ll i=st;i<=st+n;i++)b[++cnt]=a[i];
    f[1][1]=f[1][0]=0;//1:up   0:down
    for(ll i=2;i<=n+1;i++)
    {
        if(b[i]>b[i-1])
        {
            f[i][1]=min(f[i-1][0]+m+b[i]-b[i-1],f[i-1][1]+b[i]-b[i-1]);
            f[i][0]=min(f[i-1][1]+m+square(b[i]-b[i-1]),f[i-1][0]+square(b[i]-b[i-1]));
        }
        else
        {
            f[i][0]=min(f[i-1][1]+m+b[i-1]-b[i],f[i-1][0]+b[i-1]-b[i]);
            f[i][1]=min(f[i-1][0]+m+square(b[i]-b[i-1]),f[i-1][1]+square(b[i]-b[i-1]));
        }
    }
    return note[st]=min(f[n+1][1],f[n+1][0]);
}
int main()
{
    srand(time(NULL));
    n=read();m=read();
    for(ll i=1;i<=n;i++)a[i+n]=a[i]=read();
    for(int i=1;i<=20;i++)tp[i]=rand()%n+1;
    T=n;
    while(T>=1)
    {
        for(int i=1;i<=20;i++)
        {
            for(int j=1;j<=30;j++)
            {
                now=tp[i]+sin((double)(rand()%10000)/10000)*T;
                if(now<=0||now>n||DP(now)>=DP(tp[i]))continue;
                tp[i]=now;
            }
        }
        T*=0.5;
    }
    for(int i=1;i<=20;i++)minn=min(minn,note[tp[i]]);
    printf("%lld",minn);
return 0;
}


阅读更多
换一批

没有更多推荐了,返回首页