本学习笔记主要是为了拓展工程实践可能会应用到的相关知识,帮助了解和查阅知识体系、相关概念和基本思想,非以数学专业方向为主,因此不会探讨进一步的数学问题,甚至文中涉及到的部分知识也无需完全掌握,用抽象而严谨的数学语言表达的内容我会尽可能用自然语言(文中斜体字)或绘图辅助理解(本章多值函数部分教材讲解篇幅较长且理解耗时,文中该内容有大量精简消化,未用斜体字标明)
前置课程:微积分(高等数学/数学分析)
自学教材:《复变函数论(第五版)》钟玉泉 编
码字不易,求点赞收藏(´•ω•̥`)
有问题欢迎评论区讨论~
目录
解析函数
§1 解析函数的概念与柯西-黎曼方程
1.复变函数的导数与微分
复变函数的导数
设函数
ϖ
=
f
(
z
)
\varpi=f(z)
ϖ=f(z)在点
z
0
z_0
z0的邻域内或包含
z
0
z_0
z0的区域
D
D
D内有定义,如果当
z
z
z按任意方式趋于
z
0
z_0
z0,即当
Δ
z
\Delta z
Δz按任意方式趋于零时,比值
Δ
ϖ
Δ
z
\frac{\Delta\varpi}{\Delta z}
ΔzΔϖ的极限都存在,且其值有限,则称此极限为函数
f
(
z
)
f(z)
f(z)在点
z
0
z_0
z0的导数,并记为
f
′
(
z
0
)
f'(z_0)
f′(z0),即
f
′
(
z
0
)
=
lim
Δ
z
→
0
Δ
ϖ
Δ
z
=
lim
z
→
z
0
f
(
z
)
−
f
(
z
0
)
z
−
z
0
f'(z_0)=\lim_{\Delta z\rightarrow 0}\frac{\Delta\varpi}{\Delta z}=\lim_{z\rightarrow z_0}\frac{f(z)-f(z_0)}{z-z_0}
f′(z0)=Δz→0limΔzΔϖ=z→z0limz−z0f(z)−f(z0)这时称函数
f
(
z
)
f(z)
f(z)于点
z
0
z_0
z0可导
复变函数的微分
设函数
ϖ
=
f
(
z
)
\varpi=f(z)
ϖ=f(z)在点
z
z
z可导,于是
lim
Δ
z
→
0
Δ
ϖ
Δ
z
=
f
′
(
z
)
\lim_{\Delta z\rightarrow 0}\frac{\Delta\varpi}{\Delta z}=f'(z)
limΔz→0ΔzΔϖ=f′(z)
Δ
ϖ
Δ
z
=
f
′
(
z
)
+
η
,
lim
Δ
z
→
0
η
=
0
\frac{\Delta\varpi}{\Delta z}=f'(z)+\eta,\;\lim_{\Delta z\rightarrow 0}\eta=0
ΔzΔϖ=f′(z)+η,limΔz→0η=0
Δ
ϖ
=
f
′
(
z
)
Δ
z
+
ε
\Delta\varpi=f'(z)\Delta z+\varepsilon
Δϖ=f′(z)Δz+ε
其中
∣
ε
⋅
Δ
z
∣
|\varepsilon\cdot\Delta z|
∣ε⋅Δz∣为比
∣
Δ
z
∣
|\Delta z|
∣Δz∣高阶的无穷小
称
f
′
(
z
)
Δ
z
f'(z)\Delta z
f′(z)Δz为
ϖ
=
f
(
z
)
\varpi=f(z)
ϖ=f(z)在点
z
z
z的微分,记为
d
ϖ
d\varpi
dϖ或
d
f
(
z
)
df(z)
df(z),此时也称
f
(
z
)
f(z)
f(z)在点
z
z
z可微,即
d
ϖ
=
f
′
(
z
)
Δ
z
d\varpi=f'(z)\Delta z
dϖ=f′(z)Δz
可导
⇔
\Leftrightarrow
⇔可微
⇒
\Rightarrow
⇒连续
2.解析函数及其简单性质
解析函数
如果函数
ϖ
=
f
(
z
)
\varpi=f(z)
ϖ=f(z)在区域
D
D
D内可微,则称
f
(
z
)
f(z)
f(z)为区域
D
D
D内的解析函数
区域
D
D
D内的解析函数也称为
D
D
D内的全纯函数或正则函数
若函数
f
(
z
)
f(z)
f(z)在点
z
0
z_0
z0不解析,但在
z
0
z_0
z0的任一邻域内总有
f
(
z
)
f(z)
f(z)的解析点,则称
z
0
z_0
z0为函数
f
(
z
)
f(z)
f(z)的奇点
解析函数的性质
(
1
)
(1)
(1)函数在一点解析,则其各阶导数也在该点解析
(
2
)
(2)
(2)如函数
f
1
(
z
)
,
f
2
(
z
)
f_1(z),\,f_2(z)
f1(z),f2(z)在区域
D
D
D内解析,则其和、差、积、商(商要求分母在
D
D
D内不为零)在
D
D
D内解析,并且求导公式和一元实函数一致
(
3
)
(3)
(3)复合函数的求导法则:设函数
ξ
=
f
(
z
)
\xi=f(z)
ξ=f(z)在区域
D
D
D内解析,函数
ϖ
=
g
(
ξ
)
\varpi=g(\xi)
ϖ=g(ξ)在区域
G
G
G内解析,若对于
D
D
D内每一点
z
z
z,函数
f
(
z
)
f(z)
f(z)的值
ξ
\xi
ξ均属于
G
G
G,则
ϖ
=
g
[
f
(
z
)
]
\varpi=g[f(z)]
ϖ=g[f(z)]在
D
D
D内解析,且
d
g
[
f
(
z
)
]
d
z
=
d
g
(
ξ
)
d
ξ
⋅
d
f
(
z
)
d
z
\frac{dg[f(z)]}{dz}=\frac{dg(\xi)}{d\xi}\cdot\frac{df(z)}{dz}
dzdg[f(z)]=dξdg(ξ)⋅dzdf(z)
3.柯西-黎曼方程
柯西-黎曼方程
假设
ϖ
=
f
(
z
)
=
u
(
x
,
y
)
+
i
v
(
x
,
y
)
\varpi=f(z)=u(x,\,y)+iv(x,\,y)
ϖ=f(z)=u(x,y)+iv(x,y)是复变元
z
=
x
+
i
y
z=x+iy
z=x+iy的一个定义在区域
D
D
D内的函数
函数
f
(
z
)
f(z)
f(z)可微的条件
∂
u
∂
x
=
∂
v
∂
y
,
∂
u
∂
y
=
−
∂
v
∂
x
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\;\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
∂x∂u=∂y∂v,∂y∂u=−∂x∂v是关于
u
u
u及
v
v
v的偏微分方程组,称为柯西-黎曼方程(简称
C
.
−
R
.
C.-\,R.
C.−R.方程)
证明思路:设
Δ
z
=
Δ
x
+
i
Δ
y
\Delta z=\Delta x+i\Delta y
Δz=Δx+iΔy,变点
z
+
Δ
z
z+\Delta z
z+Δz分别沿平行于实轴和虚轴的方向趋于点
z
z
z的方向导数相等
可微的充要条件
设函数
f
(
z
)
=
u
(
x
,
y
)
+
i
v
(
x
,
y
)
f(z)=u(x,\,y)+iv(x,\,y)
f(z)=u(x,y)+iv(x,y)在区域
D
D
D内有定义,
f
(
x
,
y
)
f(x,\,y)
f(x,y)在
D
D
D内一点
z
=
x
+
i
y
z=x+iy
z=x+iy可微的充要条件是
(
1
)
(1)
(1)二元函数
u
(
x
,
y
)
,
v
(
x
,
y
)
u(x,\,y),\;v(x,\,y)
u(x,y),v(x,y)在点
(
x
,
y
)
(x,\,y)
(x,y)可微
(
2
)
(2)
(2)
u
(
x
,
y
)
,
v
(
x
,
y
)
u(x,\,y),\;v(x,\,y)
u(x,y),v(x,y)在点
(
x
,
y
)
(x,\,y)
(x,y)满足
C
.
−
R
.
C.-\,R.
C.−R.方程
上述条件满足时,
f
′
(
x
)
=
∂
u
∂
x
+
i
∂
v
∂
x
f'(x)=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}
f′(x)=∂x∂u+i∂x∂v(可利用
C
.
−
R
.
C.-\,R.
C.−R.方程代换其中的偏导数)
在区域
D
D
D内解析的充要条件将上述条件中点
(
x
,
y
)
(x,\,y)
(x,y)改为区域
D
D
D即可
指数形式可微的充要条件
若将复数
z
z
z表示成指数形式
z
=
r
e
i
θ
z=re^{i\theta}
z=reiθ,则函数
ϖ
=
f
(
z
)
\varpi=f(z)
ϖ=f(z)又可表示为
ϖ
=
u
(
r
,
θ
)
+
i
v
(
r
,
θ
)
\varpi=u(r,\,\theta)+iv(r,\,\theta)
ϖ=u(r,θ)+iv(r,θ)
若
u
(
r
,
θ
)
,
v
(
r
,
θ
)
u(r,\,\theta),\,v(r,\,\theta)
u(r,θ),v(r,θ)可微,且
u
r
=
1
r
v
θ
,
u
θ
=
−
r
v
r
u_r=\frac{1}{r}v_\theta,\;u_\theta=-rv_r
ur=r1vθ,uθ=−rvr,则
f
(
z
)
=
f
(
r
,
θ
)
f(z)=f(r,\theta)
f(z)=f(r,θ)可微
§2 初等解析函数
1.指数函数
对于任何复数 z = x + i y z=x+iy z=x+iy,我们用关系式 e z = e x + i y = e x ( cos y + i sin y ) e^z=e^{x+iy}=e^x(\cos y+i\sin y) ez=ex+iy=ex(cosy+isiny)来定义指数函数 e z e^z ez
性质
( 1 ) ∣ e z ∣ = e x > 0 , a r g e z = y (1)|e^z|=e^x>0,\,arg\,e^z=y (1)∣ez∣=ex>0,argez=y
( 2 ) e z (2)e^z (2)ez在 z z z平面上解析,且 ( e z ) ′ = e z (e^z)'=e^z (ez)′=ez
( 3 ) e z (3)e^z (3)ez是以 2 π i 2\pi i 2πi为基本周期的周期函数( e 2 k π i = 1 e^{2k\pi i}=1 e2kπi=1)
2.三角函数与双曲函数
由指数函数定义,当
x
=
0
x=0
x=0时推得
e
i
y
=
cos
y
+
i
sin
y
,
e
−
i
y
=
cos
y
−
i
sin
y
e^{iy}=\cos y+i\sin y,\;e^{-iy}=\cos y-i\sin y
eiy=cosy+isiny,e−iy=cosy−isiny
从而得到
sin
y
=
e
i
y
−
e
−
i
y
2
i
,
cos
y
=
e
i
y
+
e
−
i
y
2
\sin y=\frac{e^{iy}-e^{-iy}}{2i},\;\cos y=\frac{e^{iy}+e^{-iy}}{2}
siny=2ieiy−e−iy,cosy=2eiy+e−iy
因而用
sin
z
=
e
i
z
−
e
−
i
z
2
i
,
cos
z
=
e
i
z
+
e
−
i
z
2
\sin z=\frac{e^{iz}-e^{-iz}}{2i},\;\cos z=\frac{e^{iz}+e^{-iz}}{2}
sinz=2ieiz−e−iz,cosz=2eiz+e−iz分别定义为
z
z
z的正弦函数和余弦函数
性质
( 1 ) (1) (1)在 z z z平面上解析,且 ( sin z ) ′ = cos z , ( cos z ) ′ = − sin z (\sin z)'=\cos z,\;(\cos z)'=-\sin z (sinz)′=cosz,(cosz)′=−sinz
( 2 ) sin z (2)\sin z (2)sinz是奇函数, cos z \cos z cosz是偶函数,并遵从三角恒等式:
sin 2 z + cos 2 z = 1 \sin^2z+\cos^2z=1 sin2z+cos2z=1
sin ( z 1 + z 2 ) = sin z 1 ⋅ cos z 2 + cos z 1 ⋅ sin z 2 \sin(z_1+z_2)=\sin z_1\cdot\cos z_2+\cos z_1\cdot\sin z_2 sin(z1+z2)=sinz1⋅cosz2+cosz1⋅sinz2
cos ( z 1 + z 2 ) = cos z 1 ⋅ cos z 2 − sin z 1 ⋅ sin z 2 \cos(z_1+z_2)=\cos z_1\cdot\cos z_2-\sin z_1\cdot\sin z_2 cos(z1+z2)=cosz1⋅cosz2−sinz1⋅sinz2
( 3 ) (3) (3)是以 2 π 2\pi 2π为周期的周期函数
( 4 ) sin z (4)\sin z (4)sinz的零点为 z = n π ( n ∈ z ) z=n\pi\,(n∈\mathbb{z}) z=nπ(n∈z)
cos z \cos z cosz的零点为 z = ( n + 1 2 π ( n ∈ z ) z=(n+\frac{1}{2}\pi\,(n∈\mathbb{z}) z=(n+21π(n∈z)
( 5 ) (5) (5)在复数域内 ∣ sin z ∣ ≤ 1 , ∣ cos z ∣ ≤ 1 |\sin z|\leq1,\;|\cos z|\leq1 ∣sinz∣≤1,∣cosz∣≤1不成立
定义 tan z = sin z cos z , cot z = cos z sin z , sec z = 1 cos z , csc z = 1 sin z \tan z=\frac{\sin z}{\cos z},\;\cot z=\frac{\cos z}{\sin z},\;\sec z=\frac{1}{\cos z},\;\csc z=\frac{1}{\sin z} tanz=coszsinz,cotz=sinzcosz,secz=cosz1,cscz=sinz1分别称为 z z z的正切函数、余切函数、正割函数及余割函数
性质
( 1 ) (1) (1)在 z z z平面上使分母不为零的点处解析,且 ( tan z ) ′ = sec 2 z , ( cot z ) ′ = − csc 2 z , ( sec z ) ′ = sec z ⋅ tan z , ( csc z ) ′ = − csc z ⋅ cot z (\tan z)'=\sec^2z,\;(\cot z)'=-\csc^2z,\;(\sec z)'=\sec z\cdot\tan z,\;(\csc z)'=-\csc z\cdot\cot z (tanz)′=sec2z,(cotz)′=−csc2z,(secz)′=secz⋅tanz,(cscz)′=−cscz⋅cotz
( 2 ) (2) (2)正切函数和余切函数的周期为 π \pi π,正割函数和余割函数的周期为 2 π 2\pi 2π
定义
sinh
z
=
e
z
−
e
−
z
2
,
cosh
z
=
e
z
+
e
−
z
2
,
tanh
z
=
sinh
z
cosh
z
,
coth
z
=
1
tanh
z
,
s
e
c
h
z
=
1
cosh
z
,
c
s
c
h
z
=
1
sinh
z
\sinh z=\frac{e^z-e^{-z}}{2},\;\cosh z=\frac{e^z+e^{-z}}{2},\;\tanh z=\frac{\sinh z}{\cosh z},\;\coth z=\frac{1}{\tanh z},\;sech\,z=\frac{1}{\cosh z},\;csch\,z=\frac{1}{\sinh z}
sinhz=2ez−e−z,coshz=2ez+e−z,tanhz=coshzsinhz,cothz=tanhz1,sechz=coshz1,cschz=sinhz1
分别称为
z
z
z的双曲正弦函数、双曲余弦函数、双曲正切函数、双曲余切函数、双曲正割函数及双曲余割函数
§3 初等多值函数
设函数
f
(
z
)
f(z)
f(z)在区域
D
D
D内有定义,且对
D
D
D内任意不同的两点
z
1
z_1
z1及
z
2
z_2
z2,都有
f
(
z
1
)
≠
f
(
z
2
)
f(z_1)\neq f(z_2)
f(z1)=f(z2),则称函数
f
(
z
)
f(z)
f(z)在
D
D
D内是单叶的,并且称区域
D
D
D为
f
(
z
)
f(z)
f(z)的单叶性区域
区域
D
D
D到区域
G
G
G的单叶满变换
ϖ
=
f
(
z
)
\varpi=f(z)
ϖ=f(z)就是
D
D
D到
G
G
G的一一变换
1.辐角函数
辐角函数与辐角改变量
函数的多值性源于辐角的多值性
任意一个复数
z
(
z
≠
0
)
z(z\neq0)
z(z=0)有无穷多个辐角,辐角函数
ϖ
=
A
r
g
z
\varpi=Arg\,z
ϖ=Argz是一个多值函数,定义域是
C
C
C\
{
0
}
\{0\}
{0}
设
L
L
L是
C
C
C\
{
0
}
\{0\}
{0}内一条简单曲线,
z
0
z_0
z0是
L
L
L的起点,
z
1
z_1
z1是
L
L
L的终点,当
z
z
z沿
L
L
L从
z
0
z_0
z0连续变动到
z
1
z_1
z1时,
O
z
→
\overrightarrow{Oz}
Oz所旋转的角称作
A
r
g
z
Arg\,z
Argz在
L
L
L上的改变量,简称辐角改变量,记作
Δ
L
A
r
g
z
\Delta_LArg\,z
ΔLArgz
从
z
0
z_0
z0到
z
1
z_1
z1由于
L
L
L绕原点的方向和圈数不一样,
Δ
L
A
r
g
z
\Delta_LArg\,z
ΔLArgz也不一样
在 z 0 z_0 z0取定 A r g z Arg\,z Argz的一个值记为 a r g z arg\,z argz,称为 A r g z Arg\,z Argz在 z 0 z_0 z0的初值,将 a r g z 0 + Δ L A r g z arg\,z_0+\Delta_LArg\,z argz0+ΔLArgz称作 A r g z Arg\,z Argz在 z 0 z_0 z0的终值,记作 a r g z arg\,z argz,则 a r g z arg\,z argz依赖于起点的初值和辐角改变量
单值连续函数
由于多值函数不方便应用,我们希望将
A
r
g
z
Arg\,z
Argz分解为若干单值连续函数
由
a
r
g
z
=
a
r
g
z
0
+
Δ
L
A
r
g
z
arg\,z=arg\,z_0+\Delta_LArg\,z
argz=argz0+ΔLArgz可知,对取定的初值
a
r
g
z
0
arg\,z_0
argz0,由于
Δ
L
A
r
g
z
\Delta_LArg\,z
ΔLArgz在区域
C
C
C\
{
0
}
\{0\}
{0}内不唯一,
a
r
g
z
arg\,z
argz也不唯一。所以需要寻找使
Δ
L
A
r
g
z
\Delta_LArg\,z
ΔLArgz唯一的区域(辐角改变量只与起点、终点位置有关而与曲线形状无关)
该区域性质与保守场有异曲同工之处,可移用保守场的判定(沿着任何闭合环路积分均为
0
0
0),因此研究简单闭曲线
L
⊂
L\subset
L⊂
C
C
C\
{
0
}
\{0\}
{0},有
Δ L A r g z = 0 \Delta_LArg\,z=0 ΔLArgz=0, 0 0 0在 L L L外部
Δ L A r g z = 2 π \Delta_LArg\,z=2\pi ΔLArgz=2π, 0 0 0在 L L L内部
因此,只要能使区域内任一简单闭曲线都不围绕原点
z
=
0
z=0
z=0即可,若将复平面
C
C
C沿负实轴剪开成一单连通开区域记为
G
G
G,则
Δ
L
A
r
g
z
\Delta_LArg\,z
ΔLArgz只与
L
L
L的起点和终点有关,而与曲线的形状无关
在
G
G
G内固定起点
z
0
z_0
z0,取定初值
a
r
g
z
0
arg\,z_0
argz0,则
a
r
g
z
0
+
Δ
L
A
r
g
z
arg\,z_0+\Delta_LArg\,z
argz0+ΔLArgz就是单值连续函数;取定初值
a
r
g
z
0
+
2
π
arg\,z_0+2\pi
argz0+2π,得另一个单值连续函数;以此类推,取定初值
a
r
g
z
0
+
2
k
π
arg\,z_0+2k\pi
argz0+2kπ,就在
G
G
G内把
A
r
g
z
Arg\,z
Argz分成无穷多个单值连续函数
a
r
g
z
+
2
k
π
,
z
∈
G
,
k
∈
Z
arg\,z+2k\pi,\;z\in G,\,k\in \mathbb{Z}
argz+2kπ,z∈G,k∈Z
2.根式函数
根式函数及其变换
规定根式函数
ϖ
=
z
n
\varpi=\sqrt[n]{z}
ϖ=nz为幂函数
z
=
ϖ
n
z=\varpi^n
z=ϖn的反函数
如果令
z
=
r
e
i
θ
,
ϖ
=
ρ
e
i
φ
z=re^{i\theta},\;\varpi=\rho e^{i\varphi}
z=reiθ,ϖ=ρeiφ,可知
ρ
=
r
n
,
φ
=
θ
n
\rho=\sqrt[n]{r},\;\varphi=\frac{\theta}{n}
ρ=nr,φ=nθ
即
z
z
z平面到
ϖ
\varpi
ϖ平面的变换为模长开
n
n
n次方根、辐角除以
n
n
n的变换
根式函数的单叶性区域
为了寻找其单叶性区域,先限定
A
r
g
z
Arg\,z
Argz取
(
−
π
,
π
)
(-\pi,\,\pi)
(−π,π),则该变化使
z
z
z平面压缩到了
−
π
n
<
φ
<
π
n
-\frac{\pi}{n} < \varphi < \frac{\pi}{n}
−nπ<φ<nπ的角形区域内,该区域为
ϖ
=
z
n
\varpi=\sqrt[n]{z}
ϖ=nz的一个单叶性区域
同理,当
A
r
g
z
Arg\,z
Argz取
(
π
,
3
π
)
(\pi,3\pi)
(π,3π),可划分出第二个单叶性区域
π
n
<
φ
<
3
π
n
\frac{\pi}{n}<\varphi<\frac{3\pi}{n}
nπ<φ<n3π,以此类推,当
A
r
g
z
Arg\,z
Argz取
(
−
π
+
2
k
π
,
π
+
2
k
π
)
(-\pi+2k\pi,\,\pi+2k\pi)
(−π+2kπ,π+2kπ)时,对应的单叶性区域为
(
2
k
π
n
−
π
n
)
<
φ
<
(
2
k
π
n
+
π
n
)
(\frac{2k\pi}{n}-\frac{\pi}{n})<\varphi<(\frac{2k\pi}{n}+\frac{\pi}{n})
(n2kπ−nπ)<φ<(n2kπ+nπ),当
k
k
k从
0
0
0取到
n
−
1
n-1
n−1时,得到的所有单叶性区域将
ϖ
\varpi
ϖ平面填满,此为函数
ϖ
=
z
n
\varpi=\sqrt[n]{z}
ϖ=nz单叶性区域的一种分法。总之,幂函数
ϖ
=
z
n
\varpi=\sqrt[n]{z}
ϖ=nz的单叶性区域是顶点在原点
z
=
0
z=0
z=0,张度不超过
2
π
n
\frac{2\pi}{n}
n2π的角形区域
指数函数的单值解析分支
只要将
A
r
g
z
Arg\,z
Argz的取值区间范围限定在
2
π
2\pi
2π,所得即为单叶性区域,由前文辐角函数可知,在
z
z
z平面上从原点
O
O
O到点
∞
\infty
∞任意引一条射线(或一条通向无穷远点的广义简单曲线)将
z
z
z平面割破,构成一个以此割线为边界的区域,记为
G
G
G,在此区域上指定一点
z
0
z_0
z0取不同的初值
a
r
g
z
0
arg\,z_0
argz0,就能各自得到区域内任意的点
z
z
z唯一的辐角,从而得到
ϖ
k
=
(
z
n
)
k
=
r
(
z
)
n
e
i
θ
(
z
)
+
2
k
π
n
(
z
∈
G
,
k
=
0
,
1
,
…
,
n
−
1
)
\varpi_k=(\sqrt[n]{z})_k=\sqrt[n]{r(z)}e^{i\frac{\theta(z)+2k\pi}{n}}\;(z\in G,\,k=0,\,1,\,…,\,n-1)
ϖk=(nz)k=nr(z)einθ(z)+2kπ(z∈G,k=0,1,…,n−1)称为
z
n
\sqrt[n]{z}
nz的
n
n
n个单值连续分支函数。而分出
z
n
\sqrt[n]{z}
nz的单值解析分支的割线称为
z
n
\sqrt[n]{z}
nz的支割线。支割线两侧称为两岸,如果支割线接近于平行
x
x
x轴方向就分成上岸和下岸,如果接近于平行
y
y
y轴方向就分成左岸和右岸
对于
ϖ
k
=
(
z
n
)
k
\varpi_k=(\sqrt[n]{z})_k
ϖk=(nz)k的单值解析分支,有
d
d
z
(
z
n
)
k
=
1
n
(
z
n
)
k
z
(
z
∈
G
,
k
=
0
,
1
,
…
,
n
−
1
)
\frac{\mathrm{d} }{\mathrm{d} z}(\sqrt[n]{z})_k=\frac{1}{n}\frac{(\sqrt[n]{z})_k}{z}\;(z\in G,\,k=0,\,1,\,…,\,n-1)
dzd(nz)k=n1z(nz)k(z∈G,k=0,1,…,n−1)
支点
假设有一点,在此点的充分小邻域内,作一个包围此点的圆周
Γ
\Gamma
Γ,当变点
z
z
z从
Γ
\Gamma
Γ上一点除法,绕
Γ
\Gamma
Γ连续变动一周而回到其出发点时,多值函数从其一支变到另外一支,则该点称为此多值函数的支点(可以理解为该圆周
Γ
\Gamma
Γ跨过了划分单值连续分支函数的支割线),
z
n
\sqrt[n]{z}
nz以
z
=
0
z=0
z=0和
z
=
∞
z=\infty
z=∞为支点,推广到
z
−
a
n
\sqrt[n]{z-a}
nz−a则以
z
=
a
z=a
z=a和
z
=
∞
z=\infty
z=∞为支点
3.对数函数
规定对数函数
ϖ
=
L
n
z
\varpi=Ln\,z
ϖ=Lnz为指数函数
e
ϖ
=
z
e^{\varpi}=z
eϖ=z的反函数
如果令
z
=
r
e
i
θ
,
ϖ
=
u
+
i
v
{z=re^{i\theta}},\;\varpi=u+iv
z=reiθ,ϖ=u+iv,可得
u
=
ln
r
,
v
=
θ
+
2
k
π
(
k
∈
Z
)
u=\ln\,r,\,v=\theta+2k\pi\,(k\in\mathbb{Z})
u=lnr,v=θ+2kπ(k∈Z)
故方程的全部根是
L
n
z
=
ln
r
+
i
(
θ
+
2
k
π
)
=
ln
∣
z
∣
+
i
(
a
r
g
z
+
2
k
π
)
(
k
∈
Z
)
Ln\,z=\ln\,r+i(\theta+2k\pi)=\ln\,|z|+i(arg\,z+2k\pi)\,(k\in\mathbb{Z})
Lnz=lnr+i(θ+2kπ)=ln∣z∣+i(argz+2kπ)(k∈Z)
当
k
k
k取确定值时,
L
n
z
Ln\,z
Lnz的对应值记为
(
ln
z
)
k
(\ln\,z)_k
(lnz)k
基本性质
L
n
(
z
1
z
2
)
=
L
n
z
1
+
L
n
z
2
Ln(z_1z_2)=Ln\,z_1+Ln\,z_2
Ln(z1z2)=Lnz1+Lnz2
L
n
(
z
1
z
2
)
=
L
n
z
1
−
L
n
z
2
Ln(\frac{z_1}{z_2})=Ln\,z_1-Ln\,z_2
Ln(z2z1)=Lnz1−Lnz2
(
z
1
,
z
2
≠
0
,
∞
)
(z_1,\,z_2\neq0,\,\infty)
(z1,z2=0,∞)
对数函数的单值解析分支
由定义可知
z
z
z的辐角决定
ϖ
\varpi
ϖ在平面上的纵坐标,
z
z
z平面中取负实轴为割线限定辐角在
(
−
π
,
π
)
(-\pi,\,\pi)
(−π,π)的区域变换为
ϖ
\varpi
ϖ平面上纵坐标在
(
−
π
,
π
)
(-\pi,\,\pi)
(−π,π)的带形区域,该区域为
ϖ
=
L
n
z
\varpi=Ln\,z
ϖ=Lnz的一个单叶性区域。总之,对数函数
ϖ
=
L
n
z
\varpi=Ln\,z
ϖ=Lnz的单叶性区域是宽为
2
π
2\pi
2π的带形区域
ϖ
=
L
n
z
\varpi=Ln\,z
ϖ=Lnz的无穷多个单值连续分支函数为
ϖ
k
=
(
ln
z
)
k
=
ln
r
(
z
)
+
i
[
θ
(
z
)
+
2
k
π
]
(
z
∈
G
,
k
∈
z
)
\varpi_k=(\ln\,z)_k=\ln\,r(z)+i[\theta(z)+2k\pi]\;(z\in G,\,k\in\mathbb{z})
ϖk=(lnz)k=lnr(z)+i[θ(z)+2kπ](z∈G,k∈z)支点为
z
=
0
z=0
z=0和
z
=
∞
z=\infty
z=∞,支割线为连接
z
=
0
z=0
z=0和
z
=
∞
z=\infty
z=∞的广义简单曲线,且有
d
d
z
(
ln
z
)
k
=
1
z
(
z
∈
G
,
k
∈
z
)
\frac{\mathrm{d}}{\mathrm{d}z}(\ln\,z)_k=\frac{1}{z}\;(z\in G,\,k\in\mathbb{z})
dzd(lnz)k=z1(z∈G,k∈z)
4.一般幂函数与一般指数函数
一般幂函数
ϖ
=
z
α
=
e
α
L
n
z
(
z
≠
0
,
∞
;
α
∈
R
)
\varpi=z^\alpha=e^{\alpha Ln\,z}(z\ne0,\,\infty;\,\alpha\in\mathbb{R})
ϖ=zα=eαLnz(z=0,∞;α∈R)称为
z
z
z的一般幂函数
设
(
ln
z
)
0
(\ln\,z)_0
(lnz)0表示
L
n
z
Ln\,z
Lnz中的任意一个确定的值,则
z
α
=
e
α
L
n
z
=
e
α
[
(
ln
z
)
0
+
2
k
π
i
]
=
ϖ
0
e
2
k
π
i
α
(
k
∈
Z
)
z^\alpha=e^{\alpha Ln\,z}=e^{\alpha[(\ln z)_0+2k\pi i]}=\varpi_0e^{2k\pi i\alpha}\;(k\in\mathbb{Z})
zα=eαLnz=eα[(lnz)0+2kπi]=ϖ0e2kπiα(k∈Z)其中
ϖ
0
=
e
α
(
ln
z
)
0
\varpi_0=e^{\alpha(\ln z)_0}
ϖ0=eα(lnz)0表示
z
α
z^{\alpha}
zα所有的值中的一个
讨论 α \alpha α的如下三种情形:
( 1 ) α (1)\alpha (1)α是一整数 n n n,此时 e 2 k π i n = 1 e^{2k\pi in}=1 e2kπin=1, z α z^\alpha zα是 z z z的单值函数
( 2 ) α (2)\alpha (2)α是一有理数 q p \frac{q}{p} pq,此时 e 2 k π i q p e^{2k\pi i\frac{q}{p}} e2kπipq只能取 k = 0 , 1 , 2 , … , p − 1 k=0,\,1,\,2,\,…,\,p-1 k=0,1,2,…,p−1总共 p p p个不同的值(参考根式函数), z q p = ϖ 0 e 2 k π i q p , k = 0 , 1 , 2 , … , p − 1 z^{\frac{q}{p}}=\varpi_0e^{2k\pi i\frac{q}{p}},\;k=0,\,1,\,2,\,…,\,p-1 zpq=ϖ0e2kπipq,k=0,1,2,…,p−1
( 3 ) α (3)\alpha (3)α是一无理数或虚数,此时 e 2 k π i α e^{2k\pi i\alpha} e2kπiα有无限个值, z α z^\alpha zα是无限多值的
对 ϖ = z α \varpi=z^\alpha ϖ=zα的每一分支,有 d d z z α = α z α − 1 \frac{\mathrm{d}}{\mathrm{d}z}z^\alpha=\alpha z^{\alpha-1} dzdzα=αzα−1
一般指数函数
ϖ
=
α
z
=
e
z
L
n
α
(
α
≠
0
,
∞
,
为一复常数
)
\varpi=\alpha^z=e^{zLn\,\alpha}(\alpha\ne0,\infty,为一复常数)
ϖ=αz=ezLnα(α=0,∞,为一复常数)称为一般指数函数,是无穷多个独立的、在
z
z
z平面上单值解析的函数(取决于
L
n
α
Ln\,\alpha
Lnα的取值)
5.具有多个有限支点的情形
讨论函数
ϖ
=
f
(
z
)
=
P
(
z
)
n
\varpi=f(z)=\sqrt[n]{P(z)}
ϖ=f(z)=nP(z)的支点,其中
P
(
z
)
P(z)
P(z)是任意的
N
N
N次多项式
A
(
z
−
a
1
)
α
1
…
(
z
−
a
m
)
α
m
A(z-a_1)^{\alpha_1}…(z-a_m)^{\alpha_m}
A(z−a1)α1…(z−am)αm
a
1
,
a
2
,
…
,
a
m
a_1,\,a_2,\,…,\,a_m
a1,a2,…,am是
P
(
z
)
P(z)
P(z)的一切相异零点,
α
1
,
α
2
,
…
,
α
m
\alpha_1,\,\alpha_2,\,…,\,\alpha_m
α1,α2,…,αm分别是它们的重数,满足
α
1
+
α
2
+
…
+
α
m
=
N
\alpha_1+\alpha_2+…+\alpha_m=N
α1+α2+…+αm=N
根据根式函数和复数乘法对复数辐角的改变法则,可知沿一简单闭曲线
C
C
C,
f
(
z
)
f(z)
f(z)的辐角改变量
Δ
c
a
r
g
f
(
z
)
=
1
n
(
α
1
Δ
c
a
r
g
(
z
−
a
1
)
+
…
+
α
m
Δ
c
a
r
g
(
z
−
a
m
)
)
\Delta_carg\,f(z)=\frac{1}{n}(\alpha_1\Delta_carg\,(z-a_1)+…+\alpha_m\Delta_carg\,(z-a_m))
Δcargf(z)=n1(α1Δcarg(z−a1)+…+αmΔcarg(z−am))
研究简单闭曲线 C C C包围相异零点所有组合的情况,可以得到下列结论:
( 1 ) f ( z ) (1)f(z) (1)f(z)可能的支点是所有相异零点和 ∞ \infty ∞
( 2 ) (2) (2)当且仅当 n n n不能整除 α i \alpha_i αi时, a i a_i ai是 f ( z ) f(z) f(z)的支点
( 3 ) (3) (3)当且仅当 n n n不能整除 N N N时, ∞ \infty ∞是 f ( z ) f(z) f(z)的支点
( 4 ) (4) (4)如果 n n n能整除所有重数中若干个之和,则相异零点中对应的那几个就可以连接成割线抱成团,即变点 z z z沿只包含这些相异零点在其内部的简单闭曲线转一周后函数值不变。抱团的点可能不止一个,其余不入团的点则与点 ∞ \infty ∞连接成一条割线
由已给单值解析分支 f ( z ) f(z) f(z)的初值 f ( z 1 ) f(z_1) f(z1)计算终值 f ( z 2 ) f(z_2) f(z2),先计算当 z z z从 z 1 z_1 z1沿曲线 C C C(不穿过支割线)到终点 z 2 z_2 z2时, f ( z ) f(z) f(z)的辐角连续改变量 Δ c a r g f ( z ) \Delta_carg\,f(z) Δcargf(z),再计算终值 f ( z 2 ) = ∣ f ( z 2 ) ∣ e i Δ c a r g f ( z ) ⋅ e i a r g f ( z 1 ) f(z_2)=|f(z_2)|e^{i\Delta_carg\,f(z)}\cdot e^{iarg\,f(z_1)} f(z2)=∣f(z2)∣eiΔcargf(z)⋅eiargf(z1)
6.反三角函数与反双曲函数
反正切函数
A
r
c
t
a
n
z
=
1
2
i
L
n
1
+
i
z
1
−
i
z
Arctan\,z=\frac{1}{2i}Ln\frac{1+iz}{1-iz}
Arctanz=2i1Ln1−iz1+iz
反正弦函数
A
r
c
s
i
n
z
=
1
i
L
n
(
i
z
+
1
−
z
2
)
Arcsin\,z=\frac{1}{i}Ln(iz+\sqrt{1-z^2})
Arcsinz=i1Ln(iz+1−z2)
反余弦函数
A
r
c
c
o
s
z
=
1
i
L
n
(
z
+
i
1
−
z
2
)
Arccos\,z=\frac{1}{i}Ln(z+i\sqrt{1-z^2})
Arccosz=i1Ln(z+i1−z2)
反双曲余弦函数
A
r
c
o
s
h
z
=
L
n
(
z
+
z
2
−
1
)
Arcosh\,z=Ln(z+\sqrt{z^2-1})
Arcoshz=Ln(z+z2−1)
反双曲正弦函数
A
r
s
i
n
h
z
=
L
n
(
z
+
z
2
+
1
)
Arsinh\,z=Ln(z+\sqrt{z^2+1})
Arsinhz=Ln(z+z2+1)
反双曲正切函数
A
r
t
a
n
h
z
=
1
2
L
n
1
+
z
1
−
z
Artanh\,z=\frac{1}{2}Ln\frac{1+z}{1-z}
Artanhz=21Ln1−z1+z
其中对数是无穷多值的,根式是二值的,因此反三角函数和反双曲函数是无穷多值的,其分成单值解析分支的方法与前文讨论方法类似
本章完