【复变函数论】简明学习笔记(2/9)解析函数

本学习笔记主要是为了拓展工程实践可能会应用到的相关知识,帮助了解和查阅知识体系、相关概念和基本思想,非以数学专业方向为主,因此不会探讨进一步的数学问题,甚至文中涉及到的部分知识也无需完全掌握,用抽象而严谨的数学语言表达的内容我会尽可能用自然语言(文中斜体字)或绘图辅助理解(本章多值函数部分教材讲解篇幅较长且理解耗时,文中该内容有大量精简消化,未用斜体字标明)
前置课程:微积分(高等数学/数学分析)
自学教材:《复变函数论(第五版)》钟玉泉 编
码字不易,求点赞收藏(´•ω•̥`)
有问题欢迎评论区讨论~

解析函数

§1 解析函数的概念与柯西-黎曼方程

1.复变函数的导数与微分

复变函数的导数
设函数 ϖ = f ( z ) \varpi=f(z) ϖ=f(z)在点 z 0 z_0 z0的邻域内或包含 z 0 z_0 z0的区域 D D D内有定义,如果当 z z z按任意方式趋于 z 0 z_0 z0,即当 Δ z \Delta z Δz按任意方式趋于零时,比值 Δ ϖ Δ z \frac{\Delta\varpi}{\Delta z} ΔzΔϖ的极限都存在,且其值有限,则称此极限为函数 f ( z ) f(z) f(z)在点 z 0 z_0 z0导数,并记为 f ′ ( z 0 ) f'(z_0) f(z0),即 f ′ ( z 0 ) = lim ⁡ Δ z → 0 Δ ϖ Δ z = lim ⁡ z → z 0 f ( z ) − f ( z 0 ) z − z 0 f'(z_0)=\lim_{\Delta z\rightarrow 0}\frac{\Delta\varpi}{\Delta z}=\lim_{z\rightarrow z_0}\frac{f(z)-f(z_0)}{z-z_0} f(z0)=Δz0limΔzΔϖ=zz0limzz0f(z)f(z0)这时称函数 f ( z ) f(z) f(z)于点 z 0 z_0 z0可导


复变函数的微分
设函数 ϖ = f ( z ) \varpi=f(z) ϖ=f(z)在点 z z z可导,于是
lim ⁡ Δ z → 0 Δ ϖ Δ z = f ′ ( z ) \lim_{\Delta z\rightarrow 0}\frac{\Delta\varpi}{\Delta z}=f'(z) limΔz0ΔzΔϖ=f(z)
Δ ϖ Δ z = f ′ ( z ) + η ,    lim ⁡ Δ z → 0 η = 0 \frac{\Delta\varpi}{\Delta z}=f'(z)+\eta,\;\lim_{\Delta z\rightarrow 0}\eta=0 ΔzΔϖ=f(z)+η,limΔz0η=0
Δ ϖ = f ′ ( z ) Δ z + ε \Delta\varpi=f'(z)\Delta z+\varepsilon Δϖ=f(z)Δz+ε
其中 ∣ ε ⋅ Δ z ∣ |\varepsilon\cdot\Delta z| εΔz为比 ∣ Δ z ∣ |\Delta z| ∣Δz高阶的无穷小
f ′ ( z ) Δ z f'(z)\Delta z f(z)Δz ϖ = f ( z ) \varpi=f(z) ϖ=f(z)在点 z z z微分,记为 d ϖ d\varpi dϖ d f ( z ) df(z) df(z),此时也称 f ( z ) f(z) f(z)在点 z z z可微,即 d ϖ = f ′ ( z ) Δ z d\varpi=f'(z)\Delta z dϖ=f(z)Δz
可导 ⇔ \Leftrightarrow 可微 ⇒ \Rightarrow 连续


2.解析函数及其简单性质

解析函数
如果函数 ϖ = f ( z ) \varpi=f(z) ϖ=f(z)在区域 D D D内可微,则称 f ( z ) f(z) f(z)为区域 D D D内的解析函数
区域 D D D内的解析函数也称为 D D D内的全纯函数正则函数
若函数 f ( z ) f(z) f(z)在点 z 0 z_0 z0不解析,但在 z 0 z_0 z0的任一邻域内总有 f ( z ) f(z) f(z)的解析点,则称 z 0 z_0 z0为函数 f ( z ) f(z) f(z)奇点


解析函数的性质
( 1 ) (1) (1)函数在一点解析,则其各阶导数也在该点解析
( 2 ) (2) (2)如函数 f 1 ( z ) ,   f 2 ( z ) f_1(z),\,f_2(z) f1(z),f2(z)在区域 D D D内解析,则其和、差、积、商(商要求分母在 D D D内不为零)在 D D D内解析,并且求导公式和一元实函数一致
( 3 ) (3) (3)复合函数的求导法则:设函数 ξ = f ( z ) \xi=f(z) ξ=f(z)在区域 D D D内解析,函数 ϖ = g ( ξ ) \varpi=g(\xi) ϖ=g(ξ)在区域 G G G内解析,若对于 D D D内每一点 z z z,函数 f ( z ) f(z) f(z)的值 ξ \xi ξ均属于 G G G,则 ϖ = g [ f ( z ) ] \varpi=g[f(z)] ϖ=g[f(z)] D D D内解析,且 d g [ f ( z ) ] d z = d g ( ξ ) d ξ ⋅ d f ( z ) d z \frac{dg[f(z)]}{dz}=\frac{dg(\xi)}{d\xi}\cdot\frac{df(z)}{dz} dzdg[f(z)]=dξdg(ξ)dzdf(z)


3.柯西-黎曼方程

柯西-黎曼方程
假设 ϖ = f ( z ) = u ( x ,   y ) + i v ( x ,   y ) \varpi=f(z)=u(x,\,y)+iv(x,\,y) ϖ=f(z)=u(x,y)+iv(x,y)是复变元 z = x + i y z=x+iy z=x+iy的一个定义在区域 D D D内的函数
函数 f ( z ) f(z) f(z)可微的条件 ∂ u ∂ x = ∂ v ∂ y ,    ∂ u ∂ y = − ∂ v ∂ x \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\;\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} xu=yv,yu=xv是关于 u u u v v v的偏微分方程组,称为柯西-黎曼方程(简称 C . −   R . C.-\,R. C.R.方程)
证明思路:设 Δ z = Δ x + i Δ y \Delta z=\Delta x+i\Delta y Δz=Δx+iΔy,变点 z + Δ z z+\Delta z z+Δz分别沿平行于实轴和虚轴的方向趋于点 z z z的方向导数相等


可微的充要条件

设函数 f ( z ) = u ( x ,   y ) + i v ( x ,   y ) f(z)=u(x,\,y)+iv(x,\,y) f(z)=u(x,y)+iv(x,y)在区域 D D D内有定义, f ( x ,   y ) f(x,\,y) f(x,y) D D D内一点 z = x + i y z=x+iy z=x+iy可微的充要条件是
( 1 ) (1) (1)二元函数 u ( x ,   y ) ,    v ( x ,   y ) u(x,\,y),\;v(x,\,y) u(x,y),v(x,y)在点 ( x ,   y ) (x,\,y) (x,y)可微
( 2 ) (2) (2) u ( x ,   y ) ,    v ( x ,   y ) u(x,\,y),\;v(x,\,y) u(x,y),v(x,y)在点 ( x ,   y ) (x,\,y) (x,y)满足 C . −   R . C.-\,R. C.R.方程
上述条件满足时, f ′ ( x ) = ∂ u ∂ x + i ∂ v ∂ x f'(x)=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x} f(x)=xu+ixv可利用 C . −   R . C.-\,R. C.R.方程代换其中的偏导数
在区域 D D D内解析的充要条件将上述条件中点 ( x ,   y ) (x,\,y) (x,y)改为区域 D D D即可


指数形式可微的充要条件
若将复数 z z z表示成指数形式 z = r e i θ z=re^{i\theta} z=reiθ,则函数 ϖ = f ( z ) \varpi=f(z) ϖ=f(z)又可表示为 ϖ = u ( r ,   θ ) + i v ( r ,   θ ) \varpi=u(r,\,\theta)+iv(r,\,\theta) ϖ=u(r,θ)+iv(r,θ)
u ( r ,   θ ) ,   v ( r ,   θ ) u(r,\,\theta),\,v(r,\,\theta) u(r,θ),v(r,θ)可微,且 u r = 1 r v θ ,    u θ = − r v r u_r=\frac{1}{r}v_\theta,\;u_\theta=-rv_r ur=r1vθ,uθ=rvr,则 f ( z ) = f ( r , θ ) f(z)=f(r,\theta) f(z)=f(r,θ)可微


§2 初等解析函数

1.指数函数

对于任何复数 z = x + i y z=x+iy z=x+iy,我们用关系式 e z = e x + i y = e x ( cos ⁡ y + i sin ⁡ y ) e^z=e^{x+iy}=e^x(\cos y+i\sin y) ez=ex+iy=ex(cosy+isiny)来定义指数函数 e z e^z ez

性质

( 1 ) ∣ e z ∣ = e x > 0 ,   a r g   e z = y (1)|e^z|=e^x>0,\,arg\,e^z=y (1)ez=ex>0,argez=y

( 2 ) e z (2)e^z (2)ez z z z平面上解析,且 ( e z ) ′ = e z (e^z)'=e^z (ez)=ez

( 3 ) e z (3)e^z (3)ez是以 2 π i 2\pi i 2πi为基本周期的周期函数( e 2 k π i = 1 e^{2k\pi i}=1 e2kπi=1


2.三角函数与双曲函数

由指数函数定义,当 x = 0 x=0 x=0时推得 e i y = cos ⁡ y + i sin ⁡ y ,    e − i y = cos ⁡ y − i sin ⁡ y e^{iy}=\cos y+i\sin y,\;e^{-iy}=\cos y-i\sin y eiy=cosy+isiny,eiy=cosyisiny
从而得到 sin ⁡ y = e i y − e − i y 2 i ,    cos ⁡ y = e i y + e − i y 2 \sin y=\frac{e^{iy}-e^{-iy}}{2i},\;\cos y=\frac{e^{iy}+e^{-iy}}{2} siny=2ieiyeiy,cosy=2eiy+eiy
因而用 sin ⁡ z = e i z − e − i z 2 i ,    cos ⁡ z = e i z + e − i z 2 \sin z=\frac{e^{iz}-e^{-iz}}{2i},\;\cos z=\frac{e^{iz}+e^{-iz}}{2} sinz=2ieizeiz,cosz=2eiz+eiz分别定义为 z z z正弦函数余弦函数

性质

( 1 ) (1) (1) z z z平面上解析,且 ( sin ⁡ z ) ′ = cos ⁡ z ,    ( cos ⁡ z ) ′ = − sin ⁡ z (\sin z)'=\cos z,\;(\cos z)'=-\sin z (sinz)=cosz,(cosz)=sinz

( 2 ) sin ⁡ z (2)\sin z (2)sinz是奇函数, cos ⁡ z \cos z cosz是偶函数,并遵从三角恒等式:

sin ⁡ 2 z + cos ⁡ 2 z = 1 \sin^2z+\cos^2z=1 sin2z+cos2z=1

sin ⁡ ( z 1 + z 2 ) = sin ⁡ z 1 ⋅ cos ⁡ z 2 + cos ⁡ z 1 ⋅ sin ⁡ z 2 \sin(z_1+z_2)=\sin z_1\cdot\cos z_2+\cos z_1\cdot\sin z_2 sin(z1+z2)=sinz1cosz2+cosz1sinz2

cos ⁡ ( z 1 + z 2 ) = cos ⁡ z 1 ⋅ cos ⁡ z 2 − sin ⁡ z 1 ⋅ sin ⁡ z 2 \cos(z_1+z_2)=\cos z_1\cdot\cos z_2-\sin z_1\cdot\sin z_2 cos(z1+z2)=cosz1cosz2sinz1sinz2

( 3 ) (3) (3)是以 2 π 2\pi 2π为周期的周期函数

( 4 ) sin ⁡ z (4)\sin z (4)sinz的零点为 z = n π   ( n ∈ z ) z=n\pi\,(n∈\mathbb{z}) z=(nz)

cos ⁡ z \cos z cosz的零点为 z = ( n + 1 2 π   ( n ∈ z ) z=(n+\frac{1}{2}\pi\,(n∈\mathbb{z}) z=(n+21π(nz)

( 5 ) (5) (5)在复数域内 ∣ sin ⁡ z ∣ ≤ 1 ,    ∣ cos ⁡ z ∣ ≤ 1 |\sin z|\leq1,\;|\cos z|\leq1 sinz1,cosz1不成立


定义 tan ⁡ z = sin ⁡ z cos ⁡ z ,    cot ⁡ z = cos ⁡ z sin ⁡ z ,    sec ⁡ z = 1 cos ⁡ z ,    csc ⁡ z = 1 sin ⁡ z \tan z=\frac{\sin z}{\cos z},\;\cot z=\frac{\cos z}{\sin z},\;\sec z=\frac{1}{\cos z},\;\csc z=\frac{1}{\sin z} tanz=coszsinz,cotz=sinzcosz,secz=cosz1,cscz=sinz1分别称为 z z z正切函数余切函数正割函数余割函数

性质

( 1 ) (1) (1) z z z平面上使分母不为零的点处解析,且 ( tan ⁡ z ) ′ = sec ⁡ 2 z ,    ( cot ⁡ z ) ′ = − csc ⁡ 2 z ,    ( sec ⁡ z ) ′ = sec ⁡ z ⋅ tan ⁡ z ,    ( csc ⁡ z ) ′ = − csc ⁡ z ⋅ cot ⁡ z (\tan z)'=\sec^2z,\;(\cot z)'=-\csc^2z,\;(\sec z)'=\sec z\cdot\tan z,\;(\csc z)'=-\csc z\cdot\cot z (tanz)=sec2z,(cotz)=csc2z,(secz)=secztanz,(cscz)=csczcotz

( 2 ) (2) (2)正切函数和余切函数的周期为 π \pi π,正割函数和余割函数的周期为 2 π 2\pi 2π


定义 sinh ⁡ z = e z − e − z 2 ,    cosh ⁡ z = e z + e − z 2 ,    tanh ⁡ z = sinh ⁡ z cosh ⁡ z ,    coth ⁡ z = 1 tanh ⁡ z ,    s e c h   z = 1 cosh ⁡ z ,    c s c h   z = 1 sinh ⁡ z \sinh z=\frac{e^z-e^{-z}}{2},\;\cosh z=\frac{e^z+e^{-z}}{2},\;\tanh z=\frac{\sinh z}{\cosh z},\;\coth z=\frac{1}{\tanh z},\;sech\,z=\frac{1}{\cosh z},\;csch\,z=\frac{1}{\sinh z} sinhz=2ezez,coshz=2ez+ez,tanhz=coshzsinhz,cothz=tanhz1,sechz=coshz1,cschz=sinhz1
分别称为 z z z双曲正弦函数双曲余弦函数双曲正切函数双曲余切函数双曲正割函数双曲余割函数


§3 初等多值函数

设函数 f ( z ) f(z) f(z)在区域 D D D内有定义,且对 D D D内任意不同的两点 z 1 z_1 z1 z 2 z_2 z2,都有 f ( z 1 ) ≠ f ( z 2 ) f(z_1)\neq f(z_2) f(z1)=f(z2),则称函数 f ( z ) f(z) f(z) D D D内是单叶的,并且称区域 D D D f ( z ) f(z) f(z)单叶性区域
区域 D D D到区域 G G G的单叶满变换 ϖ = f ( z ) \varpi=f(z) ϖ=f(z)就是 D D D G G G的一一变换


1.辐角函数

辐角函数与辐角改变量
函数的多值性源于辐角的多值性
任意一个复数 z ( z ≠ 0 ) z(z\neq0) z(z=0)有无穷多个辐角,辐角函数 ϖ = A r g   z \varpi=Arg\,z ϖ=Argz是一个多值函数,定义域是 C C C\ { 0 } \{0\} {0}
L L L C C C\ { 0 } \{0\} {0}内一条简单曲线, z 0 z_0 z0 L L L的起点, z 1 z_1 z1 L L L的终点,当 z z z沿 L L L z 0 z_0 z0连续变动到 z 1 z_1 z1时, O z → \overrightarrow{Oz} Oz 所旋转的角称作 A r g   z Arg\,z Argz L L L上的改变量,简称辐角改变量,记作 Δ L A r g   z \Delta_LArg\,z ΔLArgz
z 0 z_0 z0 z 1 z_1 z1由于 L L L绕原点的方向和圈数不一样, Δ L A r g   z \Delta_LArg\,z ΔLArgz也不一样
在这里插入图片描述

z 0 z_0 z0取定 A r g   z Arg\,z Argz的一个值记为 a r g   z arg\,z argz,称为 A r g   z Arg\,z Argz z 0 z_0 z0的初值,将 a r g   z 0 + Δ L A r g   z arg\,z_0+\Delta_LArg\,z argz0+ΔLArgz称作 A r g   z Arg\,z Argz z 0 z_0 z0的终值,记作 a r g   z arg\,z argz,则 a r g   z arg\,z argz依赖于起点的初值和辐角改变量


单值连续函数
由于多值函数不方便应用,我们希望将 A r g   z Arg\,z Argz分解为若干单值连续函数
a r g   z = a r g   z 0 + Δ L A r g   z arg\,z=arg\,z_0+\Delta_LArg\,z argz=argz0+ΔLArgz可知,对取定的初值 a r g   z 0 arg\,z_0 argz0,由于 Δ L A r g   z \Delta_LArg\,z ΔLArgz在区域 C C C\ { 0 } \{0\} {0}内不唯一, a r g   z arg\,z argz也不唯一。所以需要寻找使 Δ L A r g   z \Delta_LArg\,z ΔLArgz唯一的区域(辐角改变量只与起点、终点位置有关而与曲线形状无关)
该区域性质与保守场有异曲同工之处,可移用保守场的判定(沿着任何闭合环路积分均为 0 0 0),因此研究简单闭曲线 L ⊂ L\subset L C C C\ { 0 } \{0\} {0},有

Δ L A r g   z = 0 \Delta_LArg\,z=0 ΔLArgz=0 0 0 0 L L L外部
Δ L A r g   z = 2 π \Delta_LArg\,z=2\pi ΔLArgz=2π 0 0 0 L L L内部

因此,只要能使区域内任一简单闭曲线都不围绕原点 z = 0 z=0 z=0即可,若将复平面 C C C沿负实轴剪开成一单连通开区域记为 G G G,则 Δ L A r g   z \Delta_LArg\,z ΔLArgz只与 L L L的起点和终点有关,而与曲线的形状无关
G G G内固定起点 z 0 z_0 z0,取定初值 a r g   z 0 arg\,z_0 argz0,则 a r g   z 0 + Δ L A r g   z arg\,z_0+\Delta_LArg\,z argz0+ΔLArgz就是单值连续函数;取定初值 a r g   z 0 + 2 π arg\,z_0+2\pi argz0+2π,得另一个单值连续函数;以此类推,取定初值 a r g   z 0 + 2 k π arg\,z_0+2k\pi argz0+2,就在 G G G内把 A r g   z Arg\,z Argz分成无穷多个单值连续函数 a r g   z + 2 k π ,    z ∈ G ,   k ∈ Z arg\,z+2k\pi,\;z\in G,\,k\in \mathbb{Z} argz+2,zG,kZ


2.根式函数

根式函数及其变换
规定根式函数 ϖ = z n \varpi=\sqrt[n]{z} ϖ=nz 幂函数 z = ϖ n z=\varpi^n z=ϖn的反函数
如果令 z = r e i θ ,    ϖ = ρ e i φ z=re^{i\theta},\;\varpi=\rho e^{i\varphi} z=reiθ,ϖ=ρeiφ,可知 ρ = r n ,    φ = θ n \rho=\sqrt[n]{r},\;\varphi=\frac{\theta}{n} ρ=nr ,φ=nθ
z z z平面到 ϖ \varpi ϖ平面的变换为模长开 n n n次方根、辐角除以 n n n的变换
在这里插入图片描述


根式函数的单叶性区域
为了寻找其单叶性区域,先限定 A r g   z Arg\,z Argz ( − π ,   π ) (-\pi,\,\pi) (π,π),则该变化使 z z z平面压缩到了 − π n < φ < π n -\frac{\pi}{n} < \varphi < \frac{\pi}{n} nπ<φ<nπ的角形区域内,该区域为 ϖ = z n \varpi=\sqrt[n]{z} ϖ=nz 的一个单叶性区域
同理,当 A r g   z Arg\,z Argz ( π , 3 π ) (\pi,3\pi) (π,3π),可划分出第二个单叶性区域 π n < φ < 3 π n \frac{\pi}{n}<\varphi<\frac{3\pi}{n} nπ<φ<n3π,以此类推,当 A r g   z Arg\,z Argz ( − π + 2 k π ,   π + 2 k π ) (-\pi+2k\pi,\,\pi+2k\pi) (π+2,π+2)时,对应的单叶性区域为 ( 2 k π n − π n ) < φ < ( 2 k π n + π n ) (\frac{2k\pi}{n}-\frac{\pi}{n})<\varphi<(\frac{2k\pi}{n}+\frac{\pi}{n}) (n2nπ)<φ<(n2+nπ),当 k k k 0 0 0取到 n − 1 n-1 n1时,得到的所有单叶性区域将 ϖ \varpi ϖ平面填满,此为函数 ϖ = z n \varpi=\sqrt[n]{z} ϖ=nz 单叶性区域的一种分法。总之,幂函数 ϖ = z n \varpi=\sqrt[n]{z} ϖ=nz 的单叶性区域是顶点在原点 z = 0 z=0 z=0,张度不超过 2 π n \frac{2\pi}{n} n2π的角形区域
在这里插入图片描述
在这里插入图片描述


指数函数的单值解析分支
只要将 A r g   z Arg\,z Argz的取值区间范围限定在 2 π 2\pi 2π,所得即为单叶性区域,由前文辐角函数可知,在 z z z平面上从原点 O O O到点 ∞ \infty 任意引一条射线(或一条通向无穷远点的广义简单曲线)将 z z z平面割破,构成一个以此割线为边界的区域,记为 G G G,在此区域上指定一点 z 0 z_0 z0取不同的初值 a r g   z 0 arg\,z_0 argz0,就能各自得到区域内任意的点 z z z唯一的辐角,从而得到 ϖ k = ( z n ) k = r ( z ) n e i θ ( z ) + 2 k π n    ( z ∈ G ,   k = 0 ,   1 ,   … ,   n − 1 ) \varpi_k=(\sqrt[n]{z})_k=\sqrt[n]{r(z)}e^{i\frac{\theta(z)+2k\pi}{n}}\;(z\in G,\,k=0,\,1,\,…,\,n-1) ϖk=(nz )k=nr(z) einθ(z)+2(zG,k=0,1,,n1)称为 z n \sqrt[n]{z} nz n n n单值连续分支函数。而分出 z n \sqrt[n]{z} nz 的单值解析分支的割线称为 z n \sqrt[n]{z} nz 支割线。支割线两侧称为两岸,如果支割线接近于平行 x x x轴方向就分成上岸下岸,如果接近于平行 y y y轴方向就分成左岸右岸
在这里插入图片描述

对于 ϖ k = ( z n ) k \varpi_k=(\sqrt[n]{z})_k ϖk=(nz )k的单值解析分支,有
d d z ( z n ) k = 1 n ( z n ) k z    ( z ∈ G ,   k = 0 ,   1 ,   … ,   n − 1 ) \frac{\mathrm{d} }{\mathrm{d} z}(\sqrt[n]{z})_k=\frac{1}{n}\frac{(\sqrt[n]{z})_k}{z}\;(z\in G,\,k=0,\,1,\,…,\,n-1) dzd(nz )k=n1z(nz )k(zG,k=0,1,,n1)


支点
假设有一点,在此点的充分小邻域内,作一个包围此点的圆周 Γ \Gamma Γ,当变点 z z z Γ \Gamma Γ上一点除法,绕 Γ \Gamma Γ连续变动一周而回到其出发点时,多值函数从其一支变到另外一支,则该点称为此多值函数的支点(可以理解为该圆周 Γ \Gamma Γ跨过了划分单值连续分支函数的支割线), z n \sqrt[n]{z} nz z = 0 z=0 z=0 z = ∞ z=\infty z=为支点,推广到 z − a n \sqrt[n]{z-a} nza 则以 z = a z=a z=a z = ∞ z=\infty z=为支点


3.对数函数

规定对数函数 ϖ = L n   z \varpi=Ln\,z ϖ=Lnz指数函数 e ϖ = z e^{\varpi}=z eϖ=z的反函数
如果令 z = r e i θ ,    ϖ = u + i v {z=re^{i\theta}},\;\varpi=u+iv z=reiθ,ϖ=u+iv,可得 u = ln ⁡   r ,   v = θ + 2 k π   ( k ∈ Z ) u=\ln\,r,\,v=\theta+2k\pi\,(k\in\mathbb{Z}) u=lnr,v=θ+2(kZ)
故方程的全部根是 L n   z = ln ⁡   r + i ( θ + 2 k π ) = ln ⁡   ∣ z ∣ + i ( a r g   z + 2 k π )   ( k ∈ Z ) Ln\,z=\ln\,r+i(\theta+2k\pi)=\ln\,|z|+i(arg\,z+2k\pi)\,(k\in\mathbb{Z}) Lnz=lnr+i(θ+2)=lnz+i(argz+2)(kZ)
k k k取确定值时, L n   z Ln\,z Lnz的对应值记为 ( ln ⁡   z ) k (\ln\,z)_k (lnz)k
基本性质
L n ( z 1 z 2 ) = L n   z 1 + L n   z 2 Ln(z_1z_2)=Ln\,z_1+Ln\,z_2 Ln(z1z2)=Lnz1+Lnz2
L n ( z 1 z 2 ) = L n   z 1 − L n   z 2 Ln(\frac{z_1}{z_2})=Ln\,z_1-Ln\,z_2 Ln(z2z1)=Lnz1Lnz2
( z 1 ,   z 2 ≠ 0 ,   ∞ ) (z_1,\,z_2\neq0,\,\infty) (z1,z2=0,)


对数函数的单值解析分支
由定义可知 z z z的辐角决定 ϖ \varpi ϖ在平面上的纵坐标, z z z平面中取负实轴为割线限定辐角在 ( − π ,   π ) (-\pi,\,\pi) (π,π)的区域变换为 ϖ \varpi ϖ平面上纵坐标在 ( − π ,   π ) (-\pi,\,\pi) (π,π)的带形区域,该区域为 ϖ = L n   z \varpi=Ln\,z ϖ=Lnz的一个单叶性区域。总之,对数函数 ϖ = L n   z \varpi=Ln\,z ϖ=Lnz的单叶性区域是宽为 2 π 2\pi 2π的带形区域
在这里插入图片描述

ϖ = L n   z \varpi=Ln\,z ϖ=Lnz的无穷多个单值连续分支函数为 ϖ k = ( ln ⁡   z ) k = ln ⁡   r ( z ) + i [ θ ( z ) + 2 k π ]    ( z ∈ G ,   k ∈ z ) \varpi_k=(\ln\,z)_k=\ln\,r(z)+i[\theta(z)+2k\pi]\;(z\in G,\,k\in\mathbb{z}) ϖk=(lnz)k=lnr(z)+i[θ(z)+2](zG,kz)支点为 z = 0 z=0 z=0 z = ∞ z=\infty z=,支割线为连接 z = 0 z=0 z=0 z = ∞ z=\infty z=的广义简单曲线,且有
d d z ( ln ⁡   z ) k = 1 z    ( z ∈ G ,   k ∈ z ) \frac{\mathrm{d}}{\mathrm{d}z}(\ln\,z)_k=\frac{1}{z}\;(z\in G,\,k\in\mathbb{z}) dzd(lnz)k=z1(zG,kz)
在这里插入图片描述
在这里插入图片描述


4.一般幂函数与一般指数函数

一般幂函数
ϖ = z α = e α L n   z ( z ≠ 0 ,   ∞ ;   α ∈ R ) \varpi=z^\alpha=e^{\alpha Ln\,z}(z\ne0,\,\infty;\,\alpha\in\mathbb{R}) ϖ=zα=eαLnz(z=0,;αR)称为 z z z一般幂函数
( ln ⁡   z ) 0 (\ln\,z)_0 (lnz)0表示 L n   z Ln\,z Lnz中的任意一个确定的值,则 z α = e α L n   z = e α [ ( ln ⁡ z ) 0 + 2 k π i ] = ϖ 0 e 2 k π i α    ( k ∈ Z ) z^\alpha=e^{\alpha Ln\,z}=e^{\alpha[(\ln z)_0+2k\pi i]}=\varpi_0e^{2k\pi i\alpha}\;(k\in\mathbb{Z}) zα=eαLnz=eα[(lnz)0+2kπi]=ϖ0e2kπiα(kZ)其中 ϖ 0 = e α ( ln ⁡ z ) 0 \varpi_0=e^{\alpha(\ln z)_0} ϖ0=eα(lnz)0表示 z α z^{\alpha} zα所有的值中的一个

讨论 α \alpha α的如下三种情形:
( 1 ) α (1)\alpha (1)α是一整数 n n n,此时 e 2 k π i n = 1 e^{2k\pi in}=1 e2kπin=1 z α z^\alpha zα z z z的单值函数
( 2 ) α (2)\alpha (2)α是一有理数 q p \frac{q}{p} pq,此时 e 2 k π i q p e^{2k\pi i\frac{q}{p}} e2kπipq只能取 k = 0 ,   1 ,   2 ,   … ,   p − 1 k=0,\,1,\,2,\,…,\,p-1 k=0,1,2,,p1总共 p p p个不同的值(参考根式函数), z q p = ϖ 0 e 2 k π i q p ,    k = 0 ,   1 ,   2 ,   … ,   p − 1 z^{\frac{q}{p}}=\varpi_0e^{2k\pi i\frac{q}{p}},\;k=0,\,1,\,2,\,…,\,p-1 zpq=ϖ0e2kπipq,k=0,1,2,,p1
( 3 ) α (3)\alpha (3)α是一无理数或虚数,此时 e 2 k π i α e^{2k\pi i\alpha} e2kπiα有无限个值, z α z^\alpha zα是无限多值的

ϖ = z α \varpi=z^\alpha ϖ=zα的每一分支,有 d d z z α = α z α − 1 \frac{\mathrm{d}}{\mathrm{d}z}z^\alpha=\alpha z^{\alpha-1} dzdzα=αzα1


一般指数函数
ϖ = α z = e z L n   α ( α ≠ 0 , ∞ , 为一复常数 ) \varpi=\alpha^z=e^{zLn\,\alpha}(\alpha\ne0,\infty,为一复常数) ϖ=αz=ezLnα(α=0,,为一复常数)称为一般指数函数,是无穷多个独立的、在 z z z平面上单值解析的函数(取决于 L n   α Ln\,\alpha Lnα的取值)


5.具有多个有限支点的情形

讨论函数 ϖ = f ( z ) = P ( z ) n \varpi=f(z)=\sqrt[n]{P(z)} ϖ=f(z)=nP(z) 的支点,其中 P ( z ) P(z) P(z)是任意的 N N N次多项式 A ( z − a 1 ) α 1 … ( z − a m ) α m A(z-a_1)^{\alpha_1}…(z-a_m)^{\alpha_m} A(za1)α1(zam)αm
a 1 ,   a 2 ,   … ,   a m a_1,\,a_2,\,…,\,a_m a1,a2,,am P ( z ) P(z) P(z)的一切相异零点 α 1 ,   α 2 ,   … ,   α m \alpha_1,\,\alpha_2,\,…,\,\alpha_m α1,α2,,αm分别是它们的重数,满足 α 1 + α 2 + … + α m = N \alpha_1+\alpha_2+…+\alpha_m=N α1+α2++αm=N
根据根式函数和复数乘法对复数辐角的改变法则,可知沿一简单闭曲线 C C C f ( z ) f(z) f(z)的辐角改变量 Δ c a r g   f ( z ) = 1 n ( α 1 Δ c a r g   ( z − a 1 ) + … + α m Δ c a r g   ( z − a m ) ) \Delta_carg\,f(z)=\frac{1}{n}(\alpha_1\Delta_carg\,(z-a_1)+…+\alpha_m\Delta_carg\,(z-a_m)) Δcargf(z)=n1(α1Δcarg(za1)++αmΔcarg(zam))

研究简单闭曲线 C C C包围相异零点所有组合的情况,可以得到下列结论:
( 1 ) f ( z ) (1)f(z) (1)f(z)可能的支点是所有相异零点和 ∞ \infty
( 2 ) (2) (2)当且仅当 n n n不能整除 α i \alpha_i αi时, a i a_i ai f ( z ) f(z) f(z)的支点
( 3 ) (3) (3)当且仅当 n n n不能整除 N N N时, ∞ \infty f ( z ) f(z) f(z)的支点
( 4 ) (4) (4)如果 n n n能整除所有重数中若干个之和,则相异零点中对应的那几个就可以连接成割线抱成团,即变点 z z z沿只包含这些相异零点在其内部的简单闭曲线转一周后函数值不变。抱团的点可能不止一个,其余不入团的点则与点 ∞ \infty 连接成一条割线


由已给单值解析分支 f ( z ) f(z) f(z)的初值 f ( z 1 ) f(z_1) f(z1)计算终值 f ( z 2 ) f(z_2) f(z2),先计算当 z z z z 1 z_1 z1沿曲线 C C C(不穿过支割线)到终点 z 2 z_2 z2时, f ( z ) f(z) f(z)的辐角连续改变量 Δ c a r g   f ( z ) \Delta_carg\,f(z) Δcargf(z),再计算终值 f ( z 2 ) = ∣ f ( z 2 ) ∣ e i Δ c a r g   f ( z ) ⋅ e i a r g   f ( z 1 ) f(z_2)=|f(z_2)|e^{i\Delta_carg\,f(z)}\cdot e^{iarg\,f(z_1)} f(z2)=f(z2)eiΔcargf(z)eiargf(z1)


6.反三角函数与反双曲函数

反正切函数 A r c t a n   z = 1 2 i L n 1 + i z 1 − i z Arctan\,z=\frac{1}{2i}Ln\frac{1+iz}{1-iz} Arctanz=2i1Ln1iz1+iz
反正弦函数 A r c s i n   z = 1 i L n ( i z + 1 − z 2 ) Arcsin\,z=\frac{1}{i}Ln(iz+\sqrt{1-z^2}) Arcsinz=i1Ln(iz+1z2 )
反余弦函数 A r c c o s   z = 1 i L n ( z + i 1 − z 2 ) Arccos\,z=\frac{1}{i}Ln(z+i\sqrt{1-z^2}) Arccosz=i1Ln(z+i1z2 )
反双曲余弦函数 A r c o s h   z = L n ( z + z 2 − 1 ) Arcosh\,z=Ln(z+\sqrt{z^2-1}) Arcoshz=Ln(z+z21 )
反双曲正弦函数 A r s i n h   z = L n ( z + z 2 + 1 ) Arsinh\,z=Ln(z+\sqrt{z^2+1}) Arsinhz=Ln(z+z2+1 )
反双曲正切函数 A r t a n h   z = 1 2 L n 1 + z 1 − z Artanh\,z=\frac{1}{2}Ln\frac{1+z}{1-z} Artanhz=21Ln1z1+z
其中对数是无穷多值的,根式是二值的,因此反三角函数和反双曲函数是无穷多值的,其分成单值解析分支的方法与前文讨论方法类似


本章完

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值