【已解决】 78. Subsets【39、40未解决】

Given a set of distinct integers, nums, return all possible subsets.

Note: 
Elements in a subset must be in non-descending order. 
The solution set must not contain duplicate subsets. 
For example, 
If nums = [1,2,3], a solution is:


[3], 
[1], 
[2], 
[1,2,3], 
[1,3], 
[2,3], 
[1,2], 
[] 
]

这道题可以使用两种方法求解,一是使用位操作,另外是使用深度优先搜索和回溯,但是我只想出了位操作,深度优先的方法是看了Discuss后想出来的。

解法一:位操作

对于数组[1,2,3],可以用一个下标0和1表示是否选择该数字,0表示未选择,1表示选中,那么每一组3个0和1的组合表示一种选择,3位共有8种选择,分别是: 
000 对应[] 
001 对应[3] 
010 对应[2] 
011 对应[2,3] 
100 … 
101 
110 
111 
那么上面为1的位表示数组中该位被选中。 
那么只需要遍历0到1<< length中的数,判断每一个数中有那几位为1,为1的那几位即会构成一个子集中的一个元素。

runtime:8ms

class Solution {
public:
    vector<vector<int>> subsets(vector<int>& nums) {
        int length=nums.size();
        sort(nums.begin(),nums.end());
        vector<vector<int> > result;
        for(int i=0;i<1<<length;i++)
        {
            vector<int> tmp;
            //计算i中有那几位为1
            for(int j=0;j<length;j++)
            {
                //判断i中第j位是否为1
                if(i&1<<j)
                {
                    tmp.push_back(nums[j]);
                }
            }
            result.push_back(tmp);
        }
        return result;
    }


};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

解法二:回溯法

还可以使用深度优先搜索来遍历数组,采用回溯法来剔除元素。使用一个变量来记录路径,每遍历到一个元素即表示找到一条路径,将其加入子集中。 
对于数组[1,2,3] 
从1开始递归查询2,3,对于2,继续向下搜索,搜索完后将2删除。 
runtime:8ms

class Solution {
public:    
    //使用深度优先的回溯法
     vector<vector<int>> subsets(vector<int>& nums) {
         vector<vector<int>> result;
         vector<int> path;
         sort(nums.begin(),nums.end());
         result.push_back(path);
         dfs(nums,0,path,result);
         return result;
     }
     void dfs(vector<int>& nums,int pos,vector<int> & path,vector<vector<int>> & result)
     {
            if(pos==nums.size())
                return;

            for(int i=pos;i<nums.size();i++)
            {
                path.push_back(nums[i]);
                printf("%d\n",pos);
                printV(path);
                
                result.push_back(path);    
                dfs(nums,i+1,path,result);        
                path.pop_back();
                printV(path);
            }
     }

};
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页